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Abstract :

We prove uniqueness for the tridimensional Navier-Stokes problem in the class L2H!N
C([0,T], B*).
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We consider the following Navier—Stokes equations for a vector field u(¢, x) defined on
(0,7) x R :

(1)

In [CHE 99], Chemin proved the following uniqueness theorem for the Navier—Stokes equa-
tions :

Theorem 1 :
Let @ and U be two solutions of the Navier—Stokes equations (1) such that
i) @ and T belong to L*([0,T], H'(IR?))
i) @ and ¥ belong to C([0,T], Bx>°) and @(0,.) = 9(0,.)
i11) For some p € (1,00), 4(0,.) belongs to the closure of the test functions in B
Then @ =¥ on [0,T].

3/p—1,00
m .

We are going to get rid of the hypothesis iii) in Theorem 1. Our result is the following
theorem :

Theorem 2 :

Let @ and U be two solutions of the Navier—Stokes equations (1) such that
i) @ and T belong to L*([0,T], H'(IR?))
ii) @ and ¥ belong to C([0,T], B:1*°) and w(0,.) = ¥/(0,.).

Then 4 = v on [0,T].



We shall even prove a more general result. We shall see (Lemma 3) that we have, for
f € B> N HY, the estimate

(2) 1£la < Cy/Ifl g I FlL s

Thus, when @ belongs to L*([0, T], H'(IR*))NC([0, T], Bx>>°), then i € L([0, T], L*(IR?)).
Moreover, when @ € L2([0,T], H!) and # is divergence free (V.i = 0), we have

(3) (@ V)i = V.(i® i) — (V.@)i = V.(@ ® ).

Thus, Theorem 2 will be a straightforward corollary of our main result :

Theorem 3 :
Let @ and U be two solutions of the Navier—Stokes equations

—

Ad—V. (@ d)—Vp

3p € D'((0,T) x R*) 0,
(4)

Vi =
such that
i) 4 and ¥ belong to LP(]0,T], q( %)) for some p € (2,00) and q € (3,00).
it) 4 and U belong to C([0,T], B,">°) and @(0,.) = 9(0,.)

Then 4 = ¥ on [0,T].

Remark : If p € (2,00) and ¢ € (3, 00) satisfy the Serrin condition 2/p + 3/¢ < 1, then
we can prove directly uniqueness in the class LPLY (so that hypothesis ii) is not useful)
and that, if @ is a solution in LP([0,T], L9), then it is easy to check that @ belongs to
C([0,T], Bx>°) (so that hypothesis ii) is redundant). Thus, theorem 3 is actually new
only in the range 1 < 2/p+3/q < 2.

1. The bilinerar operator B,.

We shall systematically get rid of the pressure p in equations (4) by using the Leray
projection operator, which is the orthogonal projection onto solenoidal vector fields. We
shall use the following lemma of Furioli, Lemarié—Rieusset and Terraneo [FUR 00] [LEM
02] :

Lemma 1 :
Let E5 be the closure of the test functions in the Morrey space L2,  :

uloc

f € Ey& sup / |f(z)|? dz < oo and lim |f(z)|? dz = 0.
|z—xz0|<1

ro€lR3 To—00 |1‘—m0|<1
If @ € L?([a,b], E2), then the following assertion are equivalent :
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(A) 4 is solution of the Navier—Stokes equations

Qi= Ai— V. (@®a) —Vp
(5) 3p € D'((a,b) x R?)

Q
I
I
>
I
|
v
_<]1
=
&
S/l

(7) Pf=f-V
(C) 4 is solution of the integral Navier—Stokes equations :

i = et DAG, — [Tet=9APY. (7@ d) ds
(8) Jii, € S'(R?)
V.ig =0

We shall apply this Lemma to solutions in LP LY, since we assume that p > 2 and that
3 < g < 0 (so that LY C E3). We shall rewrite equations (8) as
(9) i = e'"Y2%, — B,(u, 1)
where the bilinear operator B, is defined in the following way :
Definition 1 :

For it and ¥ € L?*([a,b], Ey), we define By(il,¥) as the distribution on (a,b) x R
computed as

t
(10) B, (@, 7) = / APV (i @ 7) ds

In order to analyze B,, we shall use well-known size estimates on the kernel of the
operator e(!=)ATPV. or use the maximal regularity of the heat kernel :

Lemma 2 :
B, may be written in the following ways
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(A) For a € IR with a > —1

(11) B, (i, f) = /t =)D (—A)2PY.(=A) "2 (1 §) ds

where (—A)a/2e(t_s)AIPﬁ. is a matriz of convolution operators with integrable kernels

(12) Kigoa-olo) = (s Kl =)
with K; j.o € L* N L

(B) Defining W, as

(13) W, f = /t eE=IANAF ds

and R as

(14) R(T,T) = —LIPW@@ 7)

(so that R may be defined as a sum of products of Riesz transforms), we have
1

(15) Ba(ﬁv 6) = Wa(ﬁR(ﬁ7 77))

Sometimes, we shall use the paraproduct formalism in order to deal with the product
1 ® v. More precisely, we use the Littlewood—Paley decomposition

(16) i = Soii+ Y Ajii
j=0

(where Aji = Sj11% — S;u has its spectrum contained in a corona 27~ < [¢] < 277! [see
[LEM 02] for instance]) and we use the paraproduct operators of Bony and write

(17) U@ U =7(u,v) +7(d,v) + p(d, V) + p(u, v)
with
(m(d,7) = e A ® 5o
7(u,v) = Z;‘;2 St @ AU
(18) q pli,v) = ijz Aju® Ziijfg A

p(ﬁ, '17) = SotU® SoU + Sotl @ AU + Soté @ AU+ Aot @ SoU + A1U @ Sov
+Aptl @ AogU + Aot @ A17 + Aot @ AoV
X +A U Aot + A1 @ A7 4+ A1 @ Ao+ At @ Az

4



Then, we decompose B, into
(19) B, (4, V) = Bq (4, V) + Bqg (4, V) + By , (4, 0) + Bg (4, V)

where, for 7 € {7, 7, p, p}, we have

t
(20) Bur (@, 5) = / DD (i, ) ds.

2. Refined Sobolev inequalities.

We recall the refined Sobolev inequalities of [GER 96] involving the norms of Sobolev
spaces H* (the Sobolev space Hg' is the space H = (Id — A)~/2L1 for 1 < ¢ < 00)
and Besov spaces BL™°. We give here a very simple proof of those inequalities (following
Hedberg’s proof of classical Sobolev inequalities [HED 72] [ADA 96]) :

Lemma 3 :
Let a € (0,2) and 1 < q < oo. Assume that f € H N B 1>, Then f € L) gnd
we have

(21) 1 g4y < Coall(Zd =AY Fllg I FI15

—1,00
B

Proof : We cut f in low and high frequency components : f = fo + f1, where fo = Sof
is the block of low frequencies in the Littlewood-Paley decomposition of f. We have
fo € L1N L*> and

_1 o _1 e
1 follgrrar < Ifolld 11 foll ™ < Coall(Td = A)2Fllg I FI 5

—1
B

Since f; has no low frequencies, we have f; € B;1'*> and we may write

f1 :/ BAF dt.
0

We have
e Af1]loo < Cllfrll poret ™2,

We now use the fact that, for all g € L' + L and for 0 < o < 2 we have

sup e (—tA)! = 2g(2)| < Co M, ()
t>0



where M, is the Hardy-Littlewood maximal function of g. We use this for g = (—=A)*/2 f;,
so that, for every A > 0, we have

A 0o
@] < Cal [ 27 dt My(o)+ [ 5 dt) a5 00)
0 A

hence, choosing A = (|| 1| g=1.00 /My (x))> 1+ we get

[f1(2)] € Cal A2 My(x) + A7 fi]l pori) = 200 M ()Y O | f]| 901,

5—1
B ™°

Thus, Lemma 3 is proved.

3. Mild solutions in LY.

In this section, we recall some classical results on Kato’s mild solutions in L9 for
3 < ¢ < oo [KAT 84]. We start from the following lemma :

Lemma 4 :
Fora <b, g€ (3,00) and o € (1,2 —3/q), let

Eapqa={ € C(la,8], L")/ sup (t—a)% [[i(t, )| < 00 and sup (t—a)? (¢, )||my < o0}
a<t<b a<t<b

normed with

(22) 1T, pg.0= suP_[|G(, gt sup (t=a)2 @t )]st sup (t—a)>a[[(=A)/%a(t, )]lq.
a<t<b a<t<b a<t<b

Then B, is bounded on Eqp 4.0 :

(23) 1Ba (@, )| & < Cpalb—a) 2732 d|| g, , , T B e

a,b,g,a —

Proof : In order to estimate the L? and L° norms, we just write

1

(24) et~ APV.4 @ 7|, < Cm

(t = 5) 7329 [| ]|
and

(25) [l VAPV.E b < © (5 —a)"*/9(s — a)*/2|l] oo (5 — @)*/*7)| 7] .

1
Vt—s
We now consider the homogeneous Sobolev norm

1o = 1(=2)2F g
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We shall use the following well-known inequality (for positive «)
(26) vl e < Conglll g oo + o ).
This gives

=)= [[d]l go 6 =) 2 [|U]| oo+ —a) 24 [|T]| oo (s =) = || 7] g

Vi—s(s— a)%Jr%

(27) [ I2 PV i@ 1y, < Ca g

Thus, Lemma 4 is proved.

A direct consequence of Lemma 4 and of the fixed-point theorem is the existence of
mild solutions in L9 :

Lemma 5 :
Let g € (3,00) and o € (1,2—3/q). There exists a positive constant C(«,q) such that,
for alla € R, all ti(a) € LY with V.u(a) = 0, there ezists a solution i of the Navier-Stokes

equations (5) on [a,b] (with b = a + C(a,q)||@(a)|q"*~**") such that @ € C([a,b],L9),
SUPg<pp(t — a)g/quﬁ(t? Moo < 00 and sup,;p(t — G)O‘/ZHU(L -)HH{? <00

We finish this section by describing maximal solutions which are continuous in L9
norm :

Lemma 6 :

Let ¢ € (3,00) and o € (1,2 — 3/q). Let a < b* and let @ be a solution of the
Navier-Stokes equations (5) on (a,b*) such that @ € C([a,b*),L?). Then :
(A) If U is a solution of the Navier-Stokes equations (5) on (a,b*) such that v €C([a, b*), L?)
and ¥(a,.) = i(a,.), then U =4 on [a,b*).
(B) For all b € (a,b*),we have

sup (t — a)®/?||d(t,.)]|oe < 00 and sup (t —a)*/?

(¢, e < co.
a<t<b a<t<b

(C) b* is mazimal (i.e. U can not be extended as a solution of (5) on a larger interval
[a,b') with V' > b* and @ € C([a,b’), L?)) if and only if & can not be extended at b* as a
function in C([a, b*], B3L>°).

Proof :
(A) is easy : we write W = @ — ¥; then we have

(28) W = — By (W, @) — B (7, W)
Then, we use (24) and get, for a < b < by < b*,

(29) sup [[@(t,.)]lq < C(b—a)>7 2 sup [[W(L,.)][q( sup [d(t,.)]lq + sup [|T(¢,.)]lq)-
a<t<b a<t<b a<t<by a<t<by



Thus, for b close enough to a, we get @ = 0, so that we have local uniqueness. This
propoagates to global uniqueness by continuity.

(B) is a straightforward consequence of Lemma 5 and of uniqueness.

We now consider (C). This result is by now classical, due to the works of Kozono
[KOZ 97] [KOZ 04], and their generalization by May [MAY 03]. Because of uniqueness
and of Lemma 5, it is enough to prove that, if the solution « of the Navier—Stokes equations
satisfies @ € C([a, b*), LY) NC([a, b*], BX1*>°), then the norm LY of i remains bounded. We
consider a € (1,2 — 3/q) and we shall prove more precisely that the norm of @ in By

can not blow up. .
Assume that @ € C([a, b*), LY)NC([a, b*], B1>°). Let BL> be the closure of the space

D of test functions in BL™. Since LY C B3> (recall that ¢ € (3,00)), we have more
precisely that @ € C([a, b*], B°°). Thus, following Sohr and Von Wahl’s idea [WAH 85],

we see that, for every e > 0, we may decompose 4 into

—

(30) i=U.+

!

m

with
sup ||Ue|[g=1. <e€and sup |Vello < o0.
a<t<b* a<t<b*

We shall write

(31) M. = sup |[Vi|e < 0.

a<t<b*

From (B), we know that, if a < a® < b < b*, then 4 € L*([a*,b], Hy'). We replace the
norm in Hg' by the weaker norm Bg»>°. We now estimate sup,. ;. [|t]/po-> by writing,

for a* < t < b, ii(t,.) = e“"9)2%(a*,.) — By« (il, ). In order to estimate the norm of
B« (@, 1), we use the following estimates on homogeneous Besov norms [LEM 02]

(32) sup [|[Was fllgo=e < Cayq sup |[|f|go=
a*<t<b 1 a*<t<b 4
and
(33) sup [Wa- fllgo < CogVb—a® sup |[f]|garie
a*<t<b a*<t<b

where W« is defined by (13) (replacing a with a*). We write

i(t,.) = et=9AG(a* ) = By n(Ue, @) — Bas x(V., @) — Ba- #(i, Ue)
— Ba*7

—Ba- ,(Ue, @) — Bar (V. @) — 5(Ue, @) — By~ 5(V., @)

a*<t<b



is controlled by

(34) A1 < Cya sup |li]pg sup [[Ucllgoroe <€ Cya sup |l pg.
a*<t<b a*<t<b a*<t<b

Similarly, we use (33) to get that

Ay = sup [[(Id = So)(Bas i« (Ves @) + Baw (@, Vo) + Bar p(Ve, @) + Bar 5(Ve, @) || -
a*<t<b

is controlled by

(35) Ay <CyaVb—a* sup HUHBC“X’ sup HVHOO<M CqaVb—a* sup HuHBaoo.

a*<t<b a*<t<b

For the low frequencies, we just write that
le*=92PV.f @ gll, < Clt— )7 2| f @ gl
and get that

Az = sup b 150 (Bax v (Ue, @) + Ba (10, Ue) + Bas p(Ue, @) + Bax 5(Ue, @) || g
a*<t<

is controlled by

(36) A3 < CyaVb—a* sup ||u||Baoo sup |U||B_1oo<e CyaVb—a* sup Hu||Baoo.

a*<t<b a*<t<b

and that

Ay = sup . 1150 (Ba*,w(ﬁe,ﬁ) + By # (4, ‘7(-;) + Ba*,p(‘Zaﬁ) + Ba*,ﬁ(Vevﬁ)) HBg*“’
a*<t<

is controlled by

(37) Ay < CyaVb—a* sup HUHBW’" sup ||V||oo§M CqaVb—a* sup HUHBW”

a*<t<b a*<t<b a*<t<b

Thus, we find that, for a constant D, , which depend neither on a* nor on b nor on ¢, we
have :

(38)  sup [ldl[pgee < |lda”, )|l pg-> + Dagle + (Mc +€)Vb—a*) sup [l gy

a*<t<b a*<t<b

Thus, if we choose € small enough to grant that D, e < 1/4 and then we choose a* close
enough to b* to grant that D, (M. + €)v/b* — a* < 1/4, we find

(39) sup |[|dl| gy < 2[|u(a”, )| gy
a*<t<b*



Thus, Lemma 6 is proved.

4. A weak-strong uniqueness lemma.

The main tool in the proof of Theorem 3 will be the following result of weak-strong
uniqueness :

Lemma 7 :
Let @ be a solution of the Navier—Stokes equations (2) such that

@ e L7([0, 7], L(R%)) N ([0, T], B")
with 2 < p < oo and 3 < q < 0.
If [a,b) C [0,T] and ¥ is a solution of the Navier-Stokes equations (2) on (a,b) x R?
such that ¥ € C([a,b], L) and ¥(a) = i(a), then @ =¥ on [a,b].

Proof :
Once again, we write W = « — ¥/; then we have

(40) W = — By (W, ¥) — By (0, W) — B, (0, W)
write
WRU=U+V
with
(41). U = n(w, V) + 7(W, V) + p(w, ¥) and V = p(w, 7)

Let v =1—3/q. We have LY C B'*7>°. We find easily that

(42) HUHB;“%OO < CqHﬁHBO—OH%C’O||u_”||Bo—olvoo < C(;||17||q|’117||30—01,oo

and

(43) [t APV.U| 510 < Cy L4 ! MU g=2+7200
BT = (t—s8)/2 " (t —s)1—7/2 BT

Thus, we get, for a < c <b, :

t
(44) sup| | e*"HAPV.U dsHBgol,ooSC’q((c—a)%—F(c—a)%) sup ||Ullg sup || g1~
a<lt<c Jq a<t<b a<t<b

Those computations do not apply to V. We now use the regularity of V and take a €
(1,14 ~) such that o < 2 — v. We write

(45) IV pata-2.00 < Cagll VIl ga—r.0 < C4 g1Vl g 1] g1
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and

(46) e(t—s)A]l:)ﬁ.v _ e(t—s)A]P<_A)2—g—'y YA(—A) aty—1 V,
hence
(47) et =2V V| gzt < Cagg = IV otz

Thus, we get, for a < c < b, :

t
(48) sup || [ eUIAPV.V ds|| g=1.00 <Caglc—a)? sup (t—a)*/?| 0| g sup [ g1
a<t<c Jgq a<t<b a<t<b

This gives

(49) cl_igﬁr | B(w, 77)“3;1’00 =0.

Similar computations give

(50) Clig{r 1B(7, w)HBgolv“ = 0.
Moreover, we have

(51) i (/] s = (@) = 7@z~ =0,
hence we get the following estimate :

(52) lim_ || B(, @) 5=~ = 0.

c—a

We now estimate the norm of @ in LPL?. We have obvioulsly

s = L 1 I
(53) le*=2PV.T @ Tllg < Cq———== |41 7,-

(t—s)=z
We have a similar estimate for e('"APV.%0 ® ¢ . This gives

(54) |1 B, 0)|| 1o ((a,e),z0) + | B0, G) || Lo(a,e],p0) < Cqle — a)"2| B 1o ((a,q], L) sup, |9l g-

The difficult term is B(w, &). We have obviously
(55) | B(@, 0)|| o2 (fa,e], parz) < Cle = a) 2|03 (a.0.10)-
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Moreover, using the maximal LP/2L9/? regularity of the heat kernel, we have
(56) IV =AB(@, 5)|| os2(ja,e),Lar2) < Cogll @l T (fa.e,na)-

Using the refined Sobolev inequality in H; /o N B 1> given by Lemma 3, we get

(57)  |[B(W, @) Le((a,q,00) < C’q\/||B( 0, 0) o2 (fae), 112 ) 1B (@ D) | Lo (a6, B2t =)

Thus, we have

(58) 10| Lo ([a,¢], L9y < ()T Lo ([a,q],L9)

with

(59)  n(e) < Cpgallc—a)”?| sup [T, + (c—a)/* + \/ sup || B(w, @) g-1.)
a<t<b a<t<c
From (52), we get that, for ¢ close enough to a, n(c) < 1, hence @ = 0 on [a, ¢|. Thus,
we have local uniqueness, and by continuity of @ and @ in the B_1'>° norm, this uniqueness
holds on the whole [a, b].

5. Regularity of the weak solutions.

A direct consequence of Lemma 7 is that the class of solutions we deal with is a class
of smooth solutions :

Lemma 8 :
Let 4 be a weak solution of the Navier—Stokes equations

IeD((0,T) xR di= Ad—V. (@®aT) —Vp
(60)
V.i=0

such that
i) @ belongs to LP([0,T], LY(IR?)) for some p € (2,00) and q € (3,00).
i) @ belongs to C([0,T], B:l>°).
Then @ belongs to C((0,T), LY). Hence, i@ is smooth on (0,T) x IR* : i € C®((0,T] x
R?) and moreover, for all o > 0, i belongs to C((0,T), BL™).

Proof :

If we consider ty € (0,7, there exists a € [0, o) such that u(a,.) € L. Lemma 5 gives
us a small interval [a,b] and a solution ¥ € C([a,b], L?) with ¥(a,.) = u(a,.). Let b* be
the supremum of the b such that we have a solution in C([a, b], L?). By Lemma 7, we have
@ = v on [a,min(7,b*)). But then ¢ € C([a, min(7T,b*)], BL>°) and Lemma 6 gives that ¢/

12



can be extended beyond min (7, b*), so that b* > T. Thus, @ belongs to C([ty,T], L) and

satisfies supy, oy (t — t0)*/?9|i]| 00 < o0.
From this, it is classical to deduce that @ is smooth on (0,7"). We consider the Besov

space BZ:>°. Using the Littlewood-Paley decomposition, we define the homogeneous norm

£l g = sup 277 A oo
JEZ

on B> for o > 0. If 0 > 0, and if f and g belong to BZ>, then we have the inequality

luv]| gg. 0 < Co([lull e [Vlloo 4 ([0l 7o llulloo)-

This gives
1

For a € (0,T) and a < t < T, we write

i(t) = e*~Y2G(a) — B, (i, @).

We have, for all ¢ > 0,

sup (¢t — a)/?||e""%4(a)|| goo < Collii(a)|oo-
a<t<T i

Using (61), we get

for 0 <o <1/2, sup (t—a)”/?> V2B, (@,a)| o < sup |a]|%.
a<t<T = a<t<T

In the same way, we get, for o >0 and a <t < T,

— _1 — — —
(62) |Z(1)]| pos1r20e < Colt —a) ™2 (|[@(a)l| pg + (T~ a)*/* sup || g sup_||dlls)
oo a<t<T a<t<T

Thus, Lemma 8 is proved.

6. Size of the weak solution.

In this section, we prove that we can easily control the size of the weak solution in

the neighbourhood of t =0 :

Lemma 9 :
Let 4 be a weak solution of the Navier—Stokes equations

—

I eD(0,T)xR®) dii= Ad—V. (@®1d) —Vp
(63)



such that
i) @ belongs to LP([0,T], LY(IR?)) for some p € (2,00) and q € (3,00).
i) @ belongs to C([0,T], B:l>°).

Then we have

sup V| i(t, )]s <00 and  lim Vt||i(t,.)]|sc = 0.
0<t<T t—0

Proof : One more time, for every e > 0, we may decompose u into

—

!

(64) U= Ue + Ve
with
(65) sup HU}HBA,OO <eand sup ||V,]s < 0.
0<t<T e 0<t<T
We write
(66) M, = sup ||V.]s < o0.
0<t<T

We choose o € (1,2) and, for 0 < a < ¢ < T, we define

(67) we(a,c) = sup (t—a) T 2|i(t, )| pge.
a<lt<c

In order to estimate w,, we write, for a < t < ¢,

. t—an t+a .
(68) u(t7 ) =e 2 Au( 9 ) - B(t—|—a)/2(u7 U)
where
¢ —
(69) Biyay /2 (i, @) = / APV 4 @ 1 ds.
(t4+a)/2

In order to estimate the norm of B(;)/2(, i), we use the following estimates on homo-
geneous Besov norms

(70) IWitray2f(ts M poee <Co sup || fll poee
(a+t)/2<s<t
and
(71) Witray2f(t, Ml pre < Con/(t—a)/2  sup  |[fllgo+1ee.
(a+t)/2<s<t
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We write

We then use (70) to get that

Av = [[(1d = S0) (B

is controlled by

(72) A <G, sup ||7IHB§<;°° sup ||(je||Bo—ol’°° <eCy
(a+t)/2<s<t (a+t)/2<s<t (a+t)/2<s<t

Similarly, we use (71) to get that

is controlled by

t—a . -
(13) 42 <Co\[=5= swp Nz sup Vi< M.C

att)/2<s<t (a+t)/2<s<t

For the low frequencies, we just write that

and get that
As = ||So (BH—Ta

is controlled by

[ I2PY.F © Gl < Clt — 5) 72 F @ lloc

, T

sup [|u] g

—

’p(Ve, ﬁ) + BHTa,ﬁ( € ﬁ)) HB&;“’

t—a

sup ||| gz
(a+t)/2<s<t

t—a . - t—a .
(74) Az < Ca\/ O sup ||U||Bg<;°° +SUP ||[Je||Bo—olm <eC, 5 sup ||U||Bg<;°°
t
= = =

and that

is controlled by

t —

t—a 5 — a 5
(75) A4 < Coy[—— sup |ldllpg= sup [Velloo < M Corf——  sup [d]l g~

ot <s<t arlcs<t

15



Moreover, we have

t+a t—a

t+a
2 sz + e

] e

_a t
t_Aﬁ( +a

A—)
Ve
e 52— (

t—_a, —
Mz < lle= 20

hence

t+a
2

t—a

(76) (t—a) =" e =24

7-)||Bg<;°° SCU(E(1+(t_a)HTU)+Me(\/m+(t—a)l+70))

Thus, we find that, for a constant D, which depend neither on a nor on ¢ nor on e,
we have :

(77) we(a,c) < Dy (Qg,e(a, )+ (e + (M + €)vVe — a)we(a, c)>
with
(78) Qa’e(a,c):6(1+(c—a)1+TU)+M6(\/c—a+(c—a)1+To.

Thus, if we choose € small enough to grant that D,e < 1/4 and then we choose ¢!

small enough to grant that (M. + €)/cf < € and ECIH_TU + M(\/cF + CIHTU) < €, we find
for 0 <a<c¢f

(79) sup (t—a) 7 |[@] poe < 4D, €.
a<t<c}

Letting a go to 0, we get

(80) sup ¢ 5 ||| o~ < 4Dy €.
o<t<ct

1 o
140 140

and by interpolation (since || f|loc < Collf| go7o IfI ;=7

(81) sup t2||if]|oe < Cy €75 sup ||i@d]| 5.
o<t<ckt o<t<ck B

Thus, Lemma 9 is proved.

7. Uniqueness of the weak solution.

We may now finish the proof of Theorem 3 (and of Theorem 2, due to Lemma 3) with
this easy lemma :

Lemma 10 :
Let 4 and U be two solutions of the Navier—Stokes equations (63) such that

i) @ and T belong to LP([0,T], L9(IR?)) with 2 < p < 00, 1 < ¢ < oo and
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i) supgcper VE|A(t, )lloo < oo and  limy_o Vt||i(t,.)]|eo = 0.
i) supg <o VE|U(t, oo <00 and  limy_o VE||T(2, )]0 = O.
iv) 4(0,.) = v(0,.).

Then 4 = U on [0,T].

Proof : Once again, we write @ = & — ¥; then we have

(82) W = —By(W, @) — By (U, W)
We write
(83) e APV @ ]|y < C———r || g /5]l o

\/—f

Since

! 1
f—>/0 \/t———s\/gf(s) ds

is bounded on LP for p € (2, 00], we get, for ¢ € (0,T]

(84)  @lLeo.eLe < CpllwllLeoe,Le( sup Vsllils, oo + sup Vs[|T(s, )loo)-
0<s<c 0<s<c
From (84), we get that, for ¢ close enough to 0, W = 0 on [0,¢|]. Thus, we have local

uniqueness. This uniqueness can be propagated (¢ and ¥ being weakly continuous as
time-dependent distributions on IR?) to the whole [0, T7.

8. Uniformly vanishing high frequencies.

We now explain a criterion to check continuity in the Besov norm. In most cases, this
can be checked by establishing some uniform smallness in high frequencies.

Definition 2 :
A distribution v € D'((0,T) x R*) such that t — wu(t,.) is weakly continuous from
[0,T] to D'(IR?) and satisfies

sup_|u(t,.)|[ gz1ee < 00
0<t<T

has uniformly vanishing high frequencies if it satisfies
lim sup 277[|Aju(t,.)]|eo =0

J700<t<T

This uniform vanishing condition may be viewed equivalently in the following ways :

17



Lemma 11 :
Let u be a distribution in D'((0,T) x R®) such that t — u(t,.) is weakly continuous
from [0,T] to D'(IR?®) and satisfies

(85) sup lu(t,.)|| =1 < o0.
0<t<T

Then the following assertions are equivalent :
(A) u has uniformly vanishing high frequencies :

(86) lim sup 27| Aju(t, )]l =0

J—00 0<t<T

(B) €??u is uniformly small for small 0s :

(87) lim sup V0|2 u(t,.)|o =0
0—=00<t<T

(C) For every e > 0, u may be decomposed as a sum of a uniformly bounded function and
a distribution whose Besov norm is less than € :

(88) u=Uc+ V. with sup ||Uc(t,.)|]|g-1.= <€ and sup [|[Ve(t,.)|loc < o0
0<t<T =~ 0<t<T

Proof : (A) = (C) is easy : we use the Littlewood—Paley decomposition and we write
w="U; +V; with V; = S;u and U; = ZZ;X; Agu. Then we have

Vi (t, oo < C2lult, )|l oo

and
1U;(t, )| g=1. < C'sup 28| Aru(t, )] so-
k>j

(C) = (B) is obvious : if u = U, + V,, we have
\/EHGQAu(tv Moo < \/EHVe(t’ Moo + CU(E, -)HBO—OLOO-
(B) = (A) is classical : we write Aju = e_4ijAAje47jAu and we find that
1A u(t, Yoo < Clle* " 2ult, oo
Thus, Lemma 11 is proved.

We may now state our criterion :

Theorem 4 :

18



Let 4 be a solution of the Navier—Stokes equations

I eD((0,T)xR®) dii= Ad—V. (GQ1aE) —Vp
(89)

Vaia=0

such that i belongs to LP([0,T)], LI(IR?®)) for some p € [2,00) and q € [3,00). Then the
following assertions are equivalent :

(A) @ belongs to C([0,T], BL™>).

(B) u is bounded in the Besov norm and has uniformly vanishing high frequencies :

sup |[[u(t,.)[[g=1.0c <00 and lim sup 27 At )]s = 0.
0<t<T J=00 0<t<T

Proof : We have already seen that (A) = (B) (since L? ¢ B">). Conversely, let
us assume that (B) is satisfied. Then @(0,.) belongs to B »>. If @; = S;d, we have
@;(0,.) € B3l*° and dyu; € LY([0,T], B3 b™) :
. DI
1065 (t, ) 1o = [1S;00t(E, ) poroe < Cq(22 [t ) g + 27 max(1, )t )IIZ)-

Hence, we find that «; belongs to C([0, 7], B3!*>). Since @; converges uniformly in ¢ to @
in the Besov norm, we find that @ belongs to C([0,T], BZ,»*°). Theorem 4 is proved.

9. The case of L>*°L? solutions.
Following similar lines, we can deal with L>° L3 solutions :

Theorem 5 :
Let i be a solution of the Navier—Stokes equations

I eD(0,T)xR®) dii= Ad—V. (@®1d) —Vp
(90)

'<|l
I

=0

such that @ belongs to L>°([0,T], L*>(IR*)) N C([0, T], B).
Then @ belongs to C([0,T), L?).

Proof : We write
(91) il = e'®ily 4+ @ with @ = —By(i, ).

We write

(92) I (@@ D) g1 < Cllill3
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hence

(93) sup |[@f]| groe < C sup |df3.
o<t<T 3/2 o<t<T

On the other hand, we have

(94) sup_||i@ls2 < CVT sup ||i]3.
o<t<T o<t<T

Moreover, by weak continuity of i in L3, we find that @y € L3, hence e*® iy € C([0,T], L?).
Thus, @ € L*([0,T], Byj3) N C([0,T], B3">). This implies that @ € C([0,T], L**).

Indeed, if f € ng’ N BZ1>°, we have Sy f € L3 with

IS0flls < /IS0 flls250 e < €. Ty x N s
for 7 > 0, we have

14 flls/2 < C2_j||f||3;;z; and [|A; flloo < C27||f]| o1

which gives (since L3> = [L3/2, L>)1/2,00)

I(Id = So)flls < C\/HfHB;’/O; (PR

Thus far, we got that @ € C([0,T7], L>°°) N L>°([0,T], L?). By weak continuity, (t,.)
belongs to L3 for all t € [0,T7], hence i(t,.) € L>> (the closure of the test functions in
L*°°. But we have uniqueness in the class C([0, 7], L*), as it was proved by Meyer [MEY
99]. It is then easy to conclude that the Kato solution coincides with .
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