Uniqueness for the Navier-Stokes problem: remarks on a theorem of Jean-Yves Chemin.

# Pierre Gilles LEMARIÉ-RIEUSSET

Département de Mathématiques, Université d'Évry Pierre-Gilles.Lemarie@univ-evry.fr

#### Abstract:

We prove uniqueness for the tridimensional Navier–Stokes problem in the class  $L^2H^1 \cap \mathcal{C}([0,T],B^{-1,\infty}_{\infty})$ .

**2000 MSC**: 76D05, 76D03, 35Q30, 46E35

Keywords: Navier–Stokes equations, uniqueness, Sobolev inequalities, Besov spaces

We consider the following Navier–Stokes equations for a vector field  $\vec{u}(t,x)$  defined on  $(0,T)\times\mathbb{R}^3$ :

(1) 
$$\begin{cases} \partial_t \vec{u} = \Delta \vec{u} - (\vec{u}.\vec{\nabla}) \ \vec{u} - \vec{\nabla} p \\ \vec{\nabla}.\vec{u} = 0 \end{cases}$$

In [CHE 99], Chemin proved the following uniqueness theorem for the Navier–Stokes equations :

# Theorem 1:

Let  $\vec{u}$  and  $\vec{v}$  be two solutions of the Navier-Stokes equations (1) such that

- i)  $\vec{u}$  and  $\vec{v}$  belong to  $L^2([0,T],H^1(\mathbb{R}^3))$
- ii)  $\vec{u}$  and  $\vec{v}$  belong to  $\mathcal{C}([0,T], B_{\infty}^{-1,\infty})$  and  $\vec{u}(0,.) = \vec{v}(0,.)$
- iii) For some  $p \in (1, \infty)$ ,  $\vec{u}(0, .)$  belongs to the closure of the test functions in  $B_{\infty}^{3/p-1, \infty}$ . Then  $\vec{u} = \vec{v}$  on [0, T].

We are going to get rid of the hypothesis iii) in Theorem 1. Our result is the following theorem :

#### Theorem 2:

Let  $\vec{u}$  and  $\vec{v}$  be two solutions of the Navier-Stokes equations (1) such that

- i)  $\vec{u}$  and  $\vec{v}$  belong to  $L^2([0,T],H^1(\mathbb{R}^3))$
- ii)  $\vec{u}$  and  $\vec{v}$  belong to  $\mathcal{C}([0,T], B_{\infty}^{-1,\infty})$  and  $\vec{u}(0,.) = \vec{v}(0,.)$ . Then  $\vec{u} = \vec{v}$  on [0,T].

We shall even prove a more general result. We shall see (Lemma 3) that we have, for  $f \in B_{\infty}^{-1,\infty} \cap H^1$ , the estimate

(2) 
$$||f||_4 \le C\sqrt{||f||_{B_{\infty}^{-1,\infty}}||f||_{H^1}}.$$

Thus, when  $\vec{u}$  belongs to  $L^2([0,T],H^1(\mathbbm{R}^3))\cap \mathcal{C}([0,T],B_\infty^{-1,\infty})$ , then  $\vec{u}\in L^4([0,T],L^4(\mathbbm{R}^3))$ . Moreover, when  $\vec{u}\in L^2([0,T],H^1)$  and  $\vec{u}$  is divergence free  $(\vec{\nabla}.\vec{u}=0)$ , we have

(3) 
$$(\vec{u}.\vec{\nabla})\vec{u} = \vec{\nabla}.(\vec{u}\otimes\vec{u}) - (\vec{\nabla}.\vec{u})\vec{u} = \vec{\nabla}.(\vec{u}\otimes\vec{u}).$$

Thus, Theorem 2 will be a straightforward corollary of our main result :

#### Theorem 3:

Let  $\vec{u}$  and  $\vec{v}$  be two solutions of the Navier-Stokes equations

(4) 
$$\begin{cases} \exists p \in \mathcal{D}'((0,T) \times \mathbb{R}^3) & \partial_t \vec{u} = \Delta \vec{u} - \vec{\nabla}. \ (\vec{u} \otimes \vec{u}) - \vec{\nabla}p \\ \vec{\nabla}. \vec{u} = 0 \end{cases}$$

such that

i)  $\vec{u}$  and  $\vec{v}$  belong to  $L^p([0,T],L^q(\mathbb{R}^3))$  for some  $p \in (2,\infty)$  and  $q \in (3,\infty)$ .

ii)  $\vec{u}$  and  $\vec{v}$  belong to  $\mathcal{C}([0,T],B_{\infty}^{-1,\infty})$  and  $\vec{u}(0,.)=\vec{v}(0,.)$ . Then  $\vec{u}=\vec{v}$  on [0,T].

**Remark :** If  $p \in (2, \infty)$  and  $q \in (3, \infty)$  satisfy the Serrin condition  $2/p + 3/q \le 1$ , then we can prove directly uniqueness in the class  $L^pL^q$  (so that hypothesis ii) is not useful) and that, if  $\vec{u}$  is a solution in  $L^p([0, T], L^q)$ , then it is easy to check that  $\vec{u}$  belongs to  $\mathcal{C}([0, T], B_{\infty}^{-1,\infty})$  (so that hypothesis ii) is redundant). Thus, theorem 3 is actually new only in the range 1 < 2/p + 3/q < 2.

# 1. The bilinerar operator $B_a$ .

We shall systematically get rid of the pressure p in equations (4) by using the Leray projection operator, which is the orthogonal projection onto solenoidal vector fields. We shall use the following lemma of Furioli, Lemarié–Rieusset and Terraneo [FUR 00] [LEM 02]:

# Lemma 1:

Let  $E_2$  be the closure of the test functions in the Morrey space  $L^2_{uloc}$ :

$$f \in E_2 \Leftrightarrow \sup_{x_0 \in \mathbb{R}^3} \int_{|x-x_0| < 1} |f(x)|^2 dx < \infty \text{ and } \lim_{x_0 \to \infty} \int_{|x-x_0| < 1} |f(x)|^2 dx = 0.$$

If  $\vec{u} \in L^2([a,b], E_2)$ , then the following assertion are equivalent:

(A)  $\vec{u}$  is solution of the Navier-Stokes equations

(5) 
$$\exists p \in \mathcal{D}'((a,b) \times \mathbb{R}^3) \begin{cases} \partial_t \vec{u} = \Delta \vec{u} - \vec{\nabla}. \ (\vec{u} \otimes \vec{u}) - \vec{\nabla}p \\ \vec{\nabla}. \vec{u} = 0 \end{cases}$$

(B)  $\vec{u}$  is solution of the Navier–Stokes equations :

(6) 
$$\begin{cases} \partial_t \vec{u} = \Delta \vec{u} - \mathbb{P} \vec{\nabla}. \ (\vec{u} \otimes \vec{u}) \\ \vec{\nabla}. \vec{u} = 0 \end{cases}$$

where IP is the Leray projection operator

(7) 
$$\mathbb{P}\vec{f} = \vec{f} - \vec{\nabla}\frac{1}{\Delta}(\vec{\nabla}\cdot\vec{f})$$

(C)  $\vec{u}$  is solution of the integral Navier-Stokes equations:

(8) 
$$\exists \vec{u}_a \in \mathcal{S}'(\mathbb{R}^3) \begin{cases} \vec{u} = e^{(t-a)\Delta} \vec{u}_a - \int_a^t e^{(t-s)\Delta} \mathbb{P} \vec{\nabla}. \ (\vec{u} \otimes \vec{u}) \ ds \\ \vec{\nabla}. \vec{u}_a = 0 \end{cases}$$

We shall apply this Lemma to solutions in  $L^pL^q$ , since we assume that p > 2 and that  $3 < q < \infty$  (so that  $L^q \subset E_2$ ). We shall rewrite equations (8) as

(9) 
$$\vec{u} = e^{(t-a)\Delta} \vec{u}_a - B_a(\vec{u}, \vec{u})$$

where the bilinear operator  $B_a$  is defined in the following way:

# Definition 1:

For  $\vec{u}$  and  $\vec{v} \in L^2([a,b], E_2)$ , we define  $B_a(\vec{u}, \vec{v})$  as the distribution on  $(a,b) \times \mathbb{R}^3$  computed as

(10) 
$$B_a(\vec{u}, \vec{v}) = \int_a^t e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} . (\vec{u} \otimes \vec{v}) \ ds$$

In order to analyze  $B_a$ , we shall use well-known size estimates on the kernel of the operator  $e^{(t-s)\Delta}\mathbb{P}\vec{\nabla}$ . or use the maximal regularity of the heat kernel:

# Lemma 2:

 $B_a$  may be written in the following ways

(A) For  $\alpha \in \mathbb{R}$  with  $\alpha > -1$ 

(11) 
$$B_a(\vec{u}, \vec{f}) = \int_a^t e^{(t-s)\Delta} (-\Delta)^{\alpha/2} \mathbb{P} \vec{\nabla} \cdot (-\Delta)^{-\alpha/2} (\vec{u} \otimes \vec{v}) ds$$

where  $(-\Delta)^{\alpha/2}e^{(t-s)\Delta}\mathbb{P}\vec{\nabla}$ . is a matrix of convolution operators with integrable kernels

(12) 
$$K_{i,j,\alpha,t-s}(x) = \frac{1}{(t-s)^{\frac{3}{2} + \frac{\alpha+1}{2}}} K_{i,j}(\frac{x}{\sqrt{t-s}})$$

with  $K_{i,j,\alpha} \in L^1 \cap L^\infty$ (B) Defining  $W_a$  as

(13) 
$$W_a f = \int_a^t e^{(t-s)\Delta} \Delta f \ ds$$

and R as

(14) 
$$\mathcal{R}(\vec{u}, \vec{v}) = -\frac{1}{\sqrt{-\Delta}} \mathbb{P} \vec{\nabla} \cdot (\vec{u} \otimes \vec{v})$$

(so that R may be defined as a sum of products of Riesz transforms), we have

(15) 
$$B_a(\vec{u}, \vec{v}) = W_a(\frac{1}{\sqrt{-\Delta}} \mathcal{R}(\vec{u}, \vec{v}))$$

Sometimes, we shall use the paraproduct formalism in order to deal with the product  $\vec{u} \otimes \vec{v}$ . More precisely, we use the Littlewood–Paley decomposition

(16) 
$$\vec{u} = S_0 \vec{u} + \sum_{j=0}^{\infty} \Delta_j \vec{u}$$

(where  $\Delta_j \vec{u} = S_{j+1} \vec{u} - S_j \vec{u}$  has its spectrum contained in a corona  $2^{j-1} \le |\xi| \le 2^{j+1}$  [see [LEM 02] for instance]) and we use the paraproduct operators of Bony and write

(17) 
$$\vec{u} \otimes \vec{v} = \pi(\vec{u}, \vec{v}) + \tilde{\pi}(\vec{u}, \vec{v}) + \rho(\vec{u}, \vec{v}) + \tilde{\rho}(\vec{u}, \vec{v})$$

with

(18) 
$$\begin{cases} \pi(\vec{u}, \vec{v}) = & \sum_{j=2}^{\infty} \Delta_{j} \vec{u} \otimes S_{j-2} \vec{v} \\ \tilde{\pi}(\vec{u}, \vec{v}) = & \sum_{j=2}^{\infty} S_{j-2} \vec{u} \otimes \Delta_{j} \vec{v} \\ \rho(\vec{u}, \vec{v}) = & \sum_{j=2}^{\infty} \Delta_{j} \vec{u} \otimes \sum_{k=j-2}^{j+2} \Delta_{k} \vec{v} \\ \tilde{\rho}(\vec{u}, \vec{v}) = & S_{0} \vec{u} \otimes S_{0} \vec{v} + S_{0} \vec{u} \otimes \Delta_{0} \vec{v} + S_{0} \vec{u} \otimes \Delta_{1} \vec{v} + \Delta_{0} \vec{u} \otimes S_{0} \vec{v} + \Delta_{1} \vec{u} \otimes S_{0} \vec{v} \\ & + \Delta_{0} \vec{u} \otimes \Delta_{0} \vec{v} + \Delta_{0} \vec{u} \otimes \Delta_{1} \vec{v} + \Delta_{0} \vec{u} \otimes \Delta_{2} \vec{v} \\ & + \Delta_{1} \vec{u} \otimes \Delta_{0} \vec{v} + \Delta_{1} \vec{u} \otimes \Delta_{1} \vec{v} + \Delta_{1} \vec{u} \otimes \Delta_{2} \vec{v} + \Delta_{1} \vec{u} \otimes \Delta_{3} \vec{v} \end{cases}$$

Then, we decompose  $B_a$  into

(19) 
$$B_{a}(\vec{u}, \vec{v}) = B_{a,\pi}(\vec{u}, \vec{v}) + B_{a,\tilde{\pi}}(\vec{u}, \vec{v}) + B_{a,\rho}(\vec{u}, \vec{v}) + B_{a,\tilde{\rho}}(\vec{u}, \vec{v})$$

where, for  $\tau \in \{\pi, \tilde{\pi}, \rho, \tilde{\rho}\}$ , we have

(20) 
$$B_{a,\tau}(\vec{u}, \vec{v}) = \int_a^t e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} . \tau(\vec{u}, \vec{v}) \ ds.$$

### 2. Refined Sobolev inequalities.

We recall the refined Sobolev inequalities of [GER 96] involving the norms of Sobolev spaces  $H_q^{\alpha}$  (the Sobolev space  $H_q^{\alpha}$  is the space  $H_q^{\alpha} = (Id - \Delta)^{-\alpha/2}L^q$  for  $1 < q < \infty$ ) and Besov spaces  $B_{\infty}^{\sigma,\infty}$ . We give here a very simple proof of those inequalities (following Hedberg's proof of classical Sobolev inequalities [HED 72] [ADA 96]):

#### Lemma 3:

Let  $\alpha \in (0,2)$  and  $1 < q < \infty$ . Assume that  $f \in H_q^{\alpha} \cap B_{\infty}^{-1,\infty}$ . Then  $f \in L^{q(1+\alpha)}$  and we have

(21) 
$$||f||_{q(1+\alpha)} \le C_{q,\alpha} ||(Id - \Delta)^{\alpha/2} f||_q^{\frac{1}{1+\alpha}} ||f||_{B_{\infty}^{-1,\infty}}^{\frac{\alpha}{1+\alpha}}$$

**Proof:** We cut f in low and high frequency components:  $f = f_0 + f_1$ , where  $f_0 = S_0 f$  is the block of low frequencies in the Littlewood-Paley decomposition of f. We have  $f_0 \in L^q \cap L^\infty$  and

$$||f_0||_{q(1+\alpha)} \le ||f_0||_q^{\frac{1}{1+\alpha}} ||f_0||_{\infty}^{\frac{\alpha}{1+\alpha}} \le C_{q,\alpha} ||(Id - \Delta)^{\alpha/2} f||_q^{\frac{1}{1+\alpha}} ||f||_{B_{\infty}^{-1,\infty}}^{\frac{\alpha}{1+\alpha}}$$

Since  $f_1$  has no low frequencies, we have  $f_1 \in \dot{B}_{\infty}^{-1,\infty}$  and we may write

$$f_1 = \int_0^\infty e^{t\Delta} \Delta f_1 \ dt.$$

We have

$$||e^{t\Delta}\Delta f_1||_{\infty} \le C||f_1||_{\dot{B}_{\infty}^{-1,\infty}}t^{-3/2}.$$

We now use the fact that, for all  $g \in L^1 + L^{\infty}$  and for  $0 < \alpha < 2$  we have

$$\sup_{t>0} |e^{t\Delta}(-t\Delta)^{1-\alpha/2}g(x)| \le C_{\alpha}M_g(x)$$

where  $M_g$  is the Hardy–Littlewood maximal function of g. We use this for  $g = (-\Delta)^{\alpha/2} f_1$ , so that, for every A > 0, we have

$$|f_1(x)| \le C_{\alpha} \left( \int_0^A t^{\alpha/2-1} dt \ M_g(x) + \int_A^{\infty} t^{-3/2} dt \|f_1\|_{\dot{B}_{\infty}^{-1,\infty}} \right)$$

hence, choosing  $A = (\|f_1\|_{\dot{B}_{\infty}^{-1,\infty}}/M_g(x))^{2/(1+\alpha)}$ , we get

$$|f_1(x)| \le C_{\alpha}(A^{\alpha/2}M_g(x) + A^{-1/2}||f_1||_{\dot{B}_{\infty}^{-1,\infty}}) = 2C_{\alpha}M_g(x)^{1/(1+\alpha)}||f_1||_{\dot{B}_{\infty}^{-1,\infty}}^{\alpha/(1+\alpha)}.$$

Thus, Lemma 3 is proved.

#### 3. Mild solutions in $L^q$ .

In this section, we recall some classical results on Kato's mild solutions in  $L^q$  for  $3 < q < \infty$  [KAT 84]. We start from the following lemma:

#### Lemma 4:

For 
$$a < b$$
,  $q \in (3, \infty)$  and  $\alpha \in (1, 2 - 3/q)$ , let

$$E_{a,b,q,\alpha} = \{ \vec{u} \in \mathcal{C}([a,b], L^q) / \sup_{a < t < b} (t-a)^{\frac{3}{2q}} \| \vec{u}(t,.) \|_{\infty} < \infty \text{ and } \sup_{a < t < b} (t-a)^{\frac{\alpha}{2}} \| \vec{u}(t,.) \|_{H_q^{\alpha}} < \infty \}$$

normed with

$$(22) \|\vec{u}\|_{E_{a,b,q,\alpha}} = \sup_{a < t < b} \|\vec{u}(t,.)\|_q + \sup_{a < t < b} (t-a)^{\frac{3}{2q}} \|\vec{u}(t,.)\|_{\infty} + \sup_{a < t < b} (t-a)^{\frac{3}{2q}} \|(-\Delta)^{\alpha/2} \vec{u}(t,.)\|_q.$$

Then  $B_a$  is bounded on  $E_{a,b,q,\alpha}$ :

(23) 
$$||B_a(\vec{u}, \vec{v})||_{E_{a,b,q,\alpha}} \le C_{q,\alpha} (b-a)^{1/2-3/2q} ||\vec{u}||_{E_{a,b,q,\alpha}} ||\vec{v}||_{E_{a,b,q,\alpha}}$$

**Proof:** In order to estimate the  $L^q$  and  $L^{\infty}$  norms, we just write

(24) 
$$||e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot \vec{u} \otimes \vec{v}||_q \le C \frac{1}{\sqrt{t-s}} (t-s)^{-3/2q} ||\vec{u}||_q ||\vec{v}||_q$$

and

$$(25) ||e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot \vec{u} \otimes \vec{v}||_{\infty} \le C \frac{1}{\sqrt{t-s}} (s-a)^{-3/q} (s-a)^{3/2q} ||\vec{u}||_{\infty} (s-a)^{3/2q} ||\vec{v}||_{\infty}.$$

We now consider the homogeneous Sobolev norm

$$||f||_{\dot{H}_q^{\alpha}} = ||(-\Delta)^{\alpha/2}f||_q.$$

We shall use the following well-known inequality (for positive  $\alpha$ )

(26) 
$$||uv||_{\dot{H}^{\alpha}_{q}} \leq C_{\alpha,q}(||u||_{\dot{H}^{\alpha}_{q}}||v||_{\infty} + ||v||_{\dot{H}^{\alpha}_{q}}||u||_{\infty}).$$

This gives

$$(27) \|e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot \vec{u} \otimes \vec{v}\|_{\dot{H}^{\alpha}_{q}} \leq C_{\alpha,q} \frac{(s-a)^{\frac{\alpha}{2}} \|\vec{u}\|_{\dot{H}^{\alpha}_{q}} (s-a)^{\frac{3}{2q}} \|\vec{v}\|_{\infty} + (s-a)^{\frac{3}{2q}} \|\vec{u}\|_{\infty} (s-a)^{\frac{\alpha}{2}} \|\vec{v}\|_{\dot{H}^{\alpha}_{q}}}{\sqrt{t-s} (s-a)^{\frac{3}{2q} + \frac{\alpha}{2}}}$$

Thus, Lemma 4 is proved.

A direct consequence of Lemma 4 and of the fixed-point theorem is the existence of mild solutions in  $\mathbb{L}^q$ :

#### Lemma 5:

Let  $q \in (3, \infty)$  and  $\alpha \in (1, 2-3/q)$ . There exists a positive constant  $C(\alpha, q)$  such that, for all  $a \in \mathbb{R}$ , all  $\vec{u}(a) \in L^q$  with  $\nabla . \vec{u}(a) = 0$ , there exists a solution  $\vec{u}$  of the Navier-Stokes equations (5) on [a, b] (with  $b = a + C(\alpha, q) \|\vec{u}(a)\|_q^{\frac{1}{1/2 - 3/2q}}$ ) such that  $\vec{u} \in C([a, b], L^q)$ ,  $\sup_{a < t < b} (t - a)^{3/2q} \|\vec{u}(t, .)\|_{\infty} < \infty$  and  $\sup_{a < t < b} (t - a)^{\alpha/2} \|\vec{u}(t, .)\|_{H_q^{\alpha}} < \infty$ 

We finish this section by describing maximal solutions which are continuous in  $\mathcal{L}^q$  norm :

#### Lemma 6:

Let  $q \in (3, \infty)$  and  $\alpha \in (1, 2 - 3/q)$ . Let  $a < b^*$  and let  $\vec{u}$  be a solution of the Navier-Stokes equations (5) on  $(a, b^*)$  such that  $\vec{u} \in \mathcal{C}([a, b^*), L^q)$ . Then:

(A) If  $\vec{v}$  is a solution of the Navier-Stokes equations (5) on  $(a, b^*)$  such that  $\vec{v} \in \mathcal{C}([a, b^*), L^q)$  and  $\vec{v}(a, .) = \vec{u}(a, .)$ , then  $\vec{v} = \vec{u}$  on  $[a, b^*)$ .

(B) For all  $b \in (a, b^*)$ , we have

$$\sup_{a < t < b} (t - a)^{3/2q} \|\vec{u}(t, .)\|_{\infty} < \infty \ and \ \sup_{a < t < b} (t - a)^{\alpha/2} \|\vec{u}(t, .)\|_{H_q^{\alpha}} < \infty.$$

(C)  $b^*$  is maximal (i.e.  $\vec{u}$  can not be extended as a solution of (5) on a larger interval [a,b') with  $b'>b^*$  and  $\vec{u}\in\mathcal{C}([a,b'),L^q)$ ) if and only if  $\vec{u}$  can not be extended at  $b^*$  as a function in  $\mathcal{C}([a,b^*],B_{\infty}^{-1,\infty})$ .

#### **Proof**:

(A) is easy: we write  $\vec{w} = \vec{u} - \vec{v}$ ; then we have

(28) 
$$\vec{w} = -B_a(\vec{w}, \vec{u}) - B_a(\vec{v}, \vec{w})$$

Then, we use (24) and get, for  $a < b < b_1 < b^*$ ,

$$(29) \sup_{a < t < b} \|\vec{w}(t,.)\|_q \le C(b-a)^{\frac{1}{2} - \frac{3}{2q}} \sup_{a < t < b} \|\vec{w}(t,.)\|_q (\sup_{a < t < b_1} \|\vec{u}(t,.)\|_q + \sup_{a < t < b_1} \|\vec{v}(t,.)\|_q).$$

Thus, for b close enough to a, we get  $\vec{w} = 0$ , so that we have local uniqueness. This propogates to global uniqueness by continuity.

(B) is a straightforward consequence of Lemma 5 and of uniqueness.

We now consider (C). This result is by now classical, due to the works of Kozono [KOZ 97] [KOZ 04], and their generalization by May [MAY 03]. Because of uniqueness and of Lemma 5, it is enough to prove that, if the solution  $\vec{u}$  of the Navier–Stokes equations satisfies  $\vec{u} \in \mathcal{C}([a,b^*),L^q) \cap \mathcal{C}([a,b^*],B_{\infty}^{-1,\infty})$ , then the norm  $L^q$  of  $\vec{u}$  remains bounded. We consider  $\alpha \in (1,2-3/q)$  and we shall prove more precisely that the norm of  $\vec{u}$  in  $B_q^{\alpha,\infty}$  can not blow up.

Assume that  $\vec{u} \in \mathcal{C}([a,b^*),L^q) \cap \mathcal{C}([a,b^*],B_{\infty}^{-1,\infty})$ . Let  $\tilde{B}_{\infty}^{1,\infty}$  be the closure of the space  $\mathcal{D}$  of test functions in  $B_{\infty}^{1,\infty}$ . Since  $L^q \subset \tilde{B}_{\infty}^{-1,\infty}$  (recall that  $q \in (3,\infty)$ ), we have more precisely that  $\vec{u} \in \mathcal{C}([a,b^*],\tilde{B}_{\infty}^{-1,\infty})$ . Thus, following Sohr and Von Wahl's idea [WAH 85], we see that, for every  $\epsilon > 0$ , we may decompose  $\vec{u}$  into

$$\vec{u} = \vec{U}_{\epsilon} + \vec{V}_{\epsilon}$$

with

$$\sup_{a \le t \le b^*} \|\vec{U}_{\epsilon}\|_{B_{\infty}^{-1,\infty}} < \epsilon \text{ and } \sup_{a \le t \le b^*} \|\vec{V}_{\epsilon}\|_{\infty} < \infty.$$

We shall write

(31) 
$$M_{\epsilon} = \sup_{a \le t \le b^*} \|\vec{V}_{\epsilon}\|_{\infty} < \infty.$$

From (B), we know that, if  $a < a^* < b < b^*$ , then  $\vec{u} \in L^{\infty}([a^*, b], H_q^{\alpha})$ . We replace the norm in  $H_q^{\alpha}$  by the weaker norm  $B_q^{\alpha,\infty}$ . We now estimate  $\sup_{a^* < t < b} ||\vec{u}||_{B_q^{\alpha,\infty}}$  by writing, for  $a^* < t < b$ ,  $\vec{u}(t,.) = e^{(t-a^*)\Delta}\vec{u}(a^*,.) - B_{a^*}(\vec{u},\vec{u})$ . In order to estimate the norm of  $B_{a^*}(\vec{u},\vec{u})$ , we use the following estimates on homogeneous Besov norms [LEM 02]

(32) 
$$\sup_{a^* < t < b} \|W_{a^*} f\|_{\dot{B}_q^{\alpha, \infty}} \le C_{\alpha, q} \sup_{a^* < t < b} \|f\|_{\dot{B}_q^{\alpha, \infty}}$$

and

(33) 
$$\sup_{a^* < t < b} \|W_{a^*} f\|_{\dot{B}_q^{\alpha, \infty}} \le C_{\alpha, q} \sqrt{b - a^*} \sup_{a^* < t < b} \|f\|_{B_q^{\alpha + 1, \infty}}$$

where  $W_{a^*}$  is defined by (13) (replacing a with  $a^*$ ). We write

$$\vec{u}(t,.) = e^{(t-a^*)\Delta} \vec{u}(a^*,.) - B_{a^*,\pi}(\vec{U}_{\epsilon}, \vec{u}) - B_{a^*,\pi}(\vec{V}_{\epsilon}, \vec{u}) - B_{a^*,\tilde{\pi}}(\vec{u}, \vec{U}_{\epsilon}) - B_{a^*,\tilde{\pi}}(\vec{u}, \vec{V}_{\epsilon}) \\ - B_{a^*,\rho}(\vec{U}_{\epsilon}, \vec{u}) - B_{a^*,\rho}(\vec{V}_{\epsilon}, \vec{u}) - B_{a^*,\tilde{\rho}}(\vec{U}_{\epsilon}, \vec{u}) - B_{a^*,\tilde{\rho}}(\vec{V}_{\epsilon}, \vec{u})$$

We then use (32) to get that

$$A_{1} = \sup_{\substack{a^{*} < t < b}} \| (Id - S_{0}) (B_{a^{*},\pi}(\vec{U}_{\epsilon}, \vec{u}) + B_{a^{*},\tilde{\pi}}(\vec{u}, \vec{U}_{\epsilon}) + B_{a^{*},\rho}(\vec{U}_{\epsilon}, \vec{u}) + B_{a^{*},\tilde{\rho}}(\vec{U}_{\epsilon}, \vec{u})) \|_{B_{q}^{\alpha,\infty}}$$

is controlled by

$$(34) A_1 \le C_{q,\alpha} \sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}} \sup_{a^* < t < b} \|\vec{U}_{\epsilon}\|_{B_{\infty}^{-1,\infty}} \le \epsilon C_{q,\alpha} \sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}}.$$

Similarly, we use (33) to get that

$$A_{2} = \sup_{a^{*} < t < b} \| (Id - S_{0}) (B_{a^{*},\pi}(\vec{V}_{\epsilon}, \vec{u}) + B_{a^{*},\tilde{\pi}}(\vec{u}, \vec{V}_{\epsilon}) + B_{a^{*},\rho}(\vec{V}_{\epsilon}, \vec{u}) + B_{a^{*},\tilde{\rho}}(\vec{V}_{\epsilon}, \vec{u})) \|_{B_{q}^{\alpha,\infty}}$$

is controlled by

$$(35) \ A_2 \leq C_{q,\alpha} \sqrt{b-a^*} \sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}} \sup_{a^* < t < b} \|\vec{V}_{\epsilon}\|_{\infty} \leq M_{\epsilon} \ C_{q,\alpha} \sqrt{b-a^*} \sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}}.$$

For the low frequencies, we just write that

$$||e^{(t-s)\Delta}\mathbb{P}\vec{\nabla}.\vec{f}\otimes\vec{g}||_q \leq C(t-s)^{-1/2}||\vec{f}\otimes\vec{g}||_q$$

and get that

$$A_{3} = \sup_{a^{*} < t < b} \|S_{0}(B_{a^{*},\pi}(\vec{U}_{\epsilon}, \vec{u}) + B_{a^{*},\tilde{\pi}}(\vec{u}, \vec{U}_{\epsilon}) + B_{a^{*},\rho}(\vec{U}_{\epsilon}, \vec{u}) + B_{a^{*},\tilde{\rho}}(\vec{U}_{\epsilon}, \vec{u}))\|_{B_{q}^{\alpha,\infty}}$$

is controlled by

$$(36) \ A_3 \leq C_{q,\alpha} \sqrt{b-a^*} \sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}} \sup_{a^* < t < b} \|\vec{U}_{\epsilon}\|_{B_{\infty}^{-1,\infty}} \leq \epsilon \ C_{q,\alpha} \sqrt{b-a^*} \sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}}.$$

and that

$$A_4 = \sup_{a^* < t < b} \|S_0 (B_{a^*, \pi}(\vec{V_{\epsilon}}, \vec{u}) + B_{a^*, \tilde{\pi}}(\vec{u}, \vec{V_{\epsilon}}) + B_{a^*, \rho}(\vec{V_{\epsilon}}, \vec{u}) + B_{a^*, \tilde{\rho}}(\vec{V_{\epsilon}}, \vec{u}))\|_{B_q^{\alpha, \infty}}$$

is controlled by

$$(37) A_4 \leq C_{q,\alpha} \sqrt{b-a^*} \sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}} \sup_{a^* < t < b} \|\vec{V}_{\epsilon}\|_{\infty} \leq M_{\epsilon} C_{q,\alpha} \sqrt{b-a^*} \sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}}.$$

Thus, we find that, for a constant  $D_{\alpha,q}$  which depend neither on  $a^*$  nor on b nor on  $\epsilon$ , we have :

(38) 
$$\sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}} \le \|\vec{u}(a^*,.)\|_{B_q^{\alpha,\infty}} + D_{\alpha,q}(\epsilon + (M_{\epsilon} + \epsilon)\sqrt{b - a^*}) \sup_{a^* < t < b} \|\vec{u}\|_{B_q^{\alpha,\infty}}$$

Thus, if we choose  $\epsilon$  small enough to grant that  $D_{\alpha,q}\epsilon < 1/4$  and then we choose  $a^*$  close enough to  $b^*$  to grant that  $D_{\alpha,q}(M_{\epsilon} + \epsilon)\sqrt{b^* - a^*} < 1/4$ , we find

(39) 
$$\sup_{a^* < t < b^*} \|\vec{u}\|_{B_q^{\alpha,\infty}} \le 2\|\vec{u}(a^*,.)\|_{B_q^{\alpha,\infty}}.$$

Thus, Lemma 6 is proved.

# 4. A weak-strong uniqueness lemma.

The main tool in the proof of Theorem 3 will be the following result of weak-strong uniqueness:

#### Lemma 7:

Let  $\vec{u}$  be a solution of the Navier-Stokes equations (2) such that

$$\vec{u} \in L^p([0,T], L^q(\mathbb{R}^3)) \cap \mathcal{C}([0,T], B_{\infty}^{-1,\infty})$$

with  $2 and <math>3 < q < \infty$ .

If  $[a,b] \subset [0,T]$  and  $\vec{v}$  is a solution of the Navier-Stokes equations (2) on  $(a,b) \times \mathbb{R}^3$  such that  $\vec{v} \in \mathcal{C}([a,b],L^q)$  and  $\vec{v}(a) = \vec{u}(a)$ , then  $\vec{u} = \vec{v}$  on [a,b].

#### Proof:

Once again, we write  $\vec{w} = \vec{u} - \vec{v}$ ; then we have

(40) 
$$\vec{w} = -B_a(\vec{w}, \vec{v}) - B_a(\vec{v}, \vec{w}) - B_a(\vec{w}, \vec{w})$$

We begin by estimating the norm of  $B_a(\vec{w}, \vec{v}) + B_a(\vec{v}, \vec{w})$  in  $B_{\infty}^{-1,\infty}$ . Following (17), we write

$$\vec{w} \otimes \vec{v} = U + V$$

with

(41). 
$$U = \pi(\vec{w}, \vec{v}) + \tilde{\pi}(\vec{w}, \vec{v}) + \tilde{\rho}(\vec{w}, \vec{v}) \text{ and } V = \rho(\vec{w}, \vec{v})$$

Let  $\gamma = 1 - 3/q$ . We have  $L^q \subset B_{\infty}^{-1+\gamma,\infty}$ . We find easily that

$$(42) ||U||_{B_{\infty}^{-2+\gamma,\infty}} \le C_q ||\vec{v}||_{B_{\infty}^{-1+\gamma,\infty}} ||\vec{w}||_{B_{\infty}^{-1,\infty}} \le C_q' ||\vec{v}||_q ||\vec{w}||_{B_{\infty}^{-1,\infty}}$$

and

(43) 
$$||e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot U||_{B_{\infty}^{-1,\infty}} \le C_q \left( \frac{1}{(t-s)^{1/2}} + \frac{1}{(t-s)^{1-\gamma/2}} \right) ||U||_{B_{\infty}^{-2+\gamma,\infty}}.$$

Thus, we get, for a < c < b, :

$$(44) \sup_{a < t < c} \left\| \int_{a}^{t} e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot U \ ds \right\|_{B_{\infty}^{-1,\infty}} \leq C_{q} \left( (c-a)^{\frac{1}{2}} + (c-a)^{\frac{\gamma}{2}} \right) \sup_{a < t < b} \|\vec{v}\|_{q} \sup_{a < t < b} \|\vec{w}\|_{B_{\infty}^{-1,\infty}}.$$

Those computations do not apply to V. We now use the regularity of V and take  $\alpha \in (1, 1 + \gamma)$  such that  $\alpha < 2 - \gamma$ . We write

(45) 
$$||V||_{B_{\infty}^{\alpha+\gamma-2,\infty}} \le C_{\alpha,q} ||V||_{B_q^{\alpha-1,\infty}} \le C'_{\alpha,q} ||\vec{v}||_{H_q^{\alpha}} ||\vec{w}||_{B_{\infty}^{-1,\infty}}$$

and

(46) 
$$e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot V = e^{(t-s)\Delta} \mathbb{P} (-\Delta)^{\frac{2-\alpha-\gamma}{2}} \frac{\vec{\nabla}}{\sqrt{-\Delta}} \cdot (-\Delta)^{\frac{\alpha+\gamma-1}{2}} V,$$

hence

(47) 
$$||e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot V||_{B_{\infty}^{-1,\infty}} \le C_{\alpha,q} \frac{1}{(t-s)^{\frac{2-\alpha-\gamma}{2}}} ||V||_{B_{\infty}^{\alpha+\gamma-2,\infty}}.$$

Thus, we get, for a < c < b, :

$$(48) \sup_{a < t < c} \left\| \int_{a}^{t} e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} . V \, ds \right\|_{B_{\infty}^{-1,\infty}} \le C_{\alpha,q} (c-a)^{\frac{\gamma}{2}} \sup_{a < t < b} (t-a)^{\alpha/2} \| \vec{v} \|_{H_{q}^{\alpha}} \sup_{a < t < b} \| \vec{w} \|_{B_{\infty}^{-1,\infty}}.$$

This gives

(49) 
$$\lim_{c \to a^+} \|B(\vec{w}, \vec{v})\|_{B_{\infty}^{-1, \infty}} = 0.$$

Similar computations give

(50) 
$$\lim_{c \to a^+} \|B(\vec{v}, \vec{w})\|_{B_{\infty}^{-1, \infty}} = 0.$$

Moreover, we have

(51) 
$$\lim_{c \to a^+} \|\vec{w}\|_{B_{\infty}^{-1,\infty}} = \|\vec{u}(a) - \vec{v}(a)\|_{B_{\infty}^{-1,\infty}} = 0,$$

hence we get the following estimate:

(52) 
$$\lim_{c \to a^+} \|B(\vec{w}, \vec{w})\|_{B_{\infty}^{-1, \infty}} = 0.$$

We now estimate the norm of  $\vec{w}$  in  $L^pL^q$ . We have obviously

(53) 
$$||e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot \vec{w} \otimes \vec{v}||_q \le C_q \frac{1}{(t-s)^{\frac{2-\gamma}{2}}} ||\vec{w}||_q ||\vec{v}||_q.$$

We have a similar estimate for  $e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot \vec{w} \otimes \vec{v}$ . This gives

$$(54) \|B(\vec{w}, \vec{v})\|_{L^{p}([a,c],L^{q})} + \|B(\vec{v}, \vec{w})\|_{L^{p}([a,c],L^{q})} \le C_{q}(c-a)^{\gamma/2} \|\vec{w}\|_{L^{p}([a,c],L^{q})} \sup_{a < t < b} \|\vec{v}\|_{q}.$$

The difficult term is  $B(\vec{w}, \vec{w})$ . We have obviously

(55) 
$$||B(\vec{w}, \vec{w})||_{L^{p/2}([a,c],L^{q/2})} \le C(c-a)^{1/2} ||\vec{w}||_{L^{p}([a,c],L^{q})}^{2}.$$

Moreover, using the maximal  $L^{p/2}L^{q/2}$  regularity of the heat kernel, we have

(56) 
$$\|\sqrt{-\Delta}B(\vec{w}, \vec{w})\|_{L^{p/2}([a,c],L^{q/2})} \le C_{p,q} \|\vec{w}\|_{L^{p}([a,c],L^{q})}^{2}.$$

Using the refined Sobolev inequality in  $H_{q/2}^1 \cap B_{\infty}^{-1,\infty}$  given by Lemma 3, we get

$$(57) ||B(\vec{w}, \vec{w})||_{L^{p}([a,c],L^{q})} \le C_{q} \sqrt{||B(\vec{w}, \vec{w})||_{L^{p/2}([a,c],H^{1}_{q/2})} ||B(\vec{w}, \vec{w})||_{L^{\infty}([a,c],B^{-1,\infty}_{\infty})}}$$

Thus, we have

(58) 
$$\|\vec{w}\|_{L^p([a,c],L^q)} \le \eta(c) \|\vec{w}\|_{L^p([a,c],L^q)}$$

with

(59) 
$$\eta(c) \le C_{p,q,\alpha} \left( (c-a)^{\gamma/2} \| \sup_{a < t < b} \| \vec{v} \|_q + (c-a)^{1/4} + \sqrt{\sup_{a < t < c} \| B(\vec{w}, \vec{w}) \|_{B_{\infty}^{-1,\infty}}} \right)$$

From (52), we get that, for c close enough to a,  $\eta(c) < 1$ , hence  $\vec{w} = 0$  on [a, c]. Thus, we have local uniqueness, and by continuity of  $\vec{u}$  and  $\vec{v}$  in the  $B_{\infty}^{-1,\infty}$  norm, this uniqueness holds on the whole [a, b].

# 5. Regularity of the weak solutions.

A direct consequence of Lemma 7 is that the class of solutions we deal with is a class of smooth solutions :

# Lemma 8:

Let  $\vec{u}$  be a weak solution of the Navier-Stokes equations

(60) 
$$\begin{cases} \exists p \in \mathcal{D}'((0,T) \times \mathbb{R}^3) & \partial_t \vec{u} = \Delta \vec{u} - \vec{\nabla}. \ (\vec{u} \otimes \vec{u}) - \vec{\nabla}p \\ \vec{\nabla}.\vec{u} = 0 \end{cases}$$

such that

- i)  $\vec{u}$  belongs to  $L^p([0,T], L^q(\mathbb{R}^3))$  for some  $p \in (2,\infty)$  and  $q \in (3,\infty)$ .
- ii)  $\vec{u}$  belongs to  $\mathcal{C}([0,T],B_{\infty}^{-1,\infty})$ .

Then  $\vec{u}$  belongs to  $\mathcal{C}((\vec{0},T],L^q)$ . Hence,  $\vec{u}$  is smooth on  $(0,T)\times\mathbb{R}^3$ :  $\vec{u}\in\mathcal{C}^\infty((0,T]\times\mathbb{R}^3)$  and moreover, for all  $\sigma>0$ ,  $\vec{u}$  belongs to  $\mathcal{C}((0,T],B^{\sigma,\infty}_\infty)$ .

## Proof:

If we consider  $t_0 \in (0,T)$ , there exists  $a \in [0,t_0)$  such that  $\vec{u}(a,.) \in L^q$ . Lemma 5 gives us a small interval [a,b] and a solution  $\vec{v} \in \mathcal{C}([a,b],L^q)$  with  $\vec{v}(a,.) = \vec{u}(a,.)$ . Let  $b^*$  be the supremum of the b such that we have a solution in  $\mathcal{C}([a,b],L^q)$ . By Lemma 7, we have  $\vec{u} = \vec{v}$  on  $[a, \min(T, b^*))$ . But then  $\vec{v} \in \mathcal{C}([a, \min(T, b^*)], B_{\infty}^{\sigma,\infty})$  and Lemma 6 gives that  $\vec{v}$ 

can be extended beyond  $\min(T, b^*)$ , so that  $b^* > T$ . Thus,  $\vec{u}$  belongs to  $\mathcal{C}([t_0, T], L^q)$  and satisfies  $\sup_{t_0 < t < T} (t - t_0)^{3/2q} ||\vec{u}||_{\infty} < \infty$ .

From this, it is classical to deduce that  $\vec{u}$  is smooth on (0,T). We consider the Besov space  $B_{\infty}^{\sigma,\infty}$ . Using the Littlewood-Paley decomposition, we define the homogeneous norm

$$||f||_{\dot{B}_{\infty}^{\sigma,\infty}} = \sup_{j \in \mathbb{Z}} 2^{j\sigma} ||\Delta_j f||_{\infty}$$

on  $B_{\infty}^{\sigma,\infty}$  for  $\sigma>0$ . If  $\sigma>0$ , and if f and g belong to  $B_{\infty}^{\sigma,\infty}$ , then we have the inequality

$$||uv||_{\dot{B}^{\sigma,\infty}_{\infty}} \leq C_{\sigma}(||u||_{\dot{B}^{\sigma,\infty}_{\infty}}||v||_{\infty} + ||v||_{\dot{B}^{\sigma,\infty}_{\infty}}||u||_{\infty}).$$

This gives

(61) 
$$||e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot (\vec{u} \otimes \vec{u})||_{\dot{B}_{\infty}^{\sigma+1/2,\infty}} \leq C_q \frac{1}{(s-t)^{3/4}} ||\vec{u}||_{\dot{B}_{\infty}^{\sigma,\infty}} ||\vec{u}||_{\infty}.$$

For  $a \in (0,T)$  and a < t < T, we write

$$\vec{u}(t) = e^{(t-a)\Delta} \vec{u}(a) - B_a(\vec{u}, \vec{u}).$$

We have, for all  $\sigma \geq 0$ ,

$$\sup_{a < t < T} (t - a)^{\sigma/2} \|e^{(t-a)\Delta} \vec{u}(a)\|_{\dot{B}^{\sigma,\infty}_{\infty}} \le C_{\sigma} \|\vec{u}(a)\|_{\infty}.$$

Using (61), we get

for 
$$0 \le \sigma \le 1/2$$
,  $\sup_{a < t < T} (t - a)^{\sigma/2 - 1/2} \|B_a(\vec{u}, \vec{u})\|_{\dot{B}^{\sigma, \infty}_{\infty}} \le \sup_{a < t < T} \|\vec{u}\|_{\infty}^2$ .

In the same way, we get, for  $\sigma > 0$  and a < t < T,

$$(62) \|\vec{u}(t)\|_{\dot{B}^{\sigma+1/2,\infty}_{\infty}} \leq C_{\sigma}(t-a)^{-\frac{1}{2}} (\|\vec{u}(a)\|_{\dot{B}^{\sigma,\infty}_{\infty}} + (T-a)^{3/4} \sup_{a < t < T} \|\vec{u}\|_{\dot{B}^{\sigma,\infty}_{\infty}} \sup_{a < t < T} \|\vec{u}\|_{\infty})$$

Thus, Lemma 8 is proved.

# 6. Size of the weak solution.

In this section, we prove that we can easily control the size of the weak solution in the neighbourhood of t=0:

#### Lemma 9:

Let  $\vec{u}$  be a weak solution of the Navier-Stokes equations

(63) 
$$\begin{cases} \exists p \in \mathcal{D}'((0,T) \times \mathbb{R}^3) & \partial_t \vec{u} = \Delta \vec{u} - \vec{\nabla}. \ (\vec{u} \otimes \vec{u}) - \vec{\nabla}p \\ \vec{\nabla}. \vec{u} = 0 \end{cases}$$

such that

i)  $\vec{u}$  belongs to  $L^p([0,T], L^q(\mathbb{R}^3))$  for some  $p \in (2,\infty)$  and  $q \in (3,\infty)$ . ii)  $\vec{u}$  belongs to  $C([0,T], B_{\infty}^{-1,\infty})$ .

Then we have

$$\sup_{0 < t < T} \sqrt{t} \|\vec{u}(t,.)\|_{\infty} < \infty \quad and \quad \lim_{t \to 0} \sqrt{t} \|\vec{u}(t,.)\|_{\infty} = 0.$$

**Proof**: One more time, for every  $\epsilon > 0$ , we may decompose  $\vec{u}$  into

(64) 
$$\vec{u} = \vec{U}_{\epsilon} + \vec{V}_{\epsilon}$$

with

(65) 
$$\sup_{0 \le t \le T} \|\vec{U}_{\epsilon}\|_{B_{\infty}^{-1,\infty}} < \epsilon \text{ and } \sup_{0 \le t \le T} \|\vec{V}_{\epsilon}\|_{\infty} < \infty.$$

We write

(66) 
$$M_{\epsilon} = \sup_{0 < t < T} \|\vec{V}_{\epsilon}\|_{\infty} < \infty.$$

We choose  $\sigma \in (1,2)$  and, for  $0 < a < c \le T$ , we define

(67) 
$$\omega_{\sigma}(a,c) = \sup_{a < t < c} (t-a)^{(1+\sigma)/2} \|\vec{u}(t,.)\|_{B_{\infty}^{\sigma,\infty}}.$$

In order to estimate  $\omega_{\sigma}$ , we write, for a < t < c,

(68) 
$$\vec{u}(t,.) = e^{\frac{t-a}{2}\Delta} \vec{u}(\frac{t+a}{2},.) - B_{(t+a)/2}(\vec{u},\vec{u})$$

where

(69) 
$$B_{(t+a)/2}(\vec{u}, \vec{u}) = \int_{(t+a)/2}^{t} e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} . \vec{u} \otimes \vec{u} \, ds.$$

In order to estimate the norm of  $B_{(t+a)/2}(\vec{u}, \vec{u})$ , we use the following estimates on homogeneous Besov norms

(70) 
$$||W_{(t+a)/2}f(t,.)||_{\dot{B}_{\infty}^{\sigma,\infty}} \le C_{\sigma} \sup_{(a+t)/2 < s < t} ||f||_{\dot{B}_{\infty}^{\sigma,\infty}}$$

and

(71) 
$$||W_{(t+a)/2}f(t,.)||_{\dot{B}^{\sigma,\infty}_{\infty}} \le C_{\sigma}\sqrt{(t-a)/2} \sup_{(a+t)/2 < s < t} ||f||_{B^{\sigma+1,\infty}_{\infty}}.$$

We write

$$\vec{u}(t,.) = e^{\frac{t-a}{2}\Delta} \vec{u}(\frac{t+a}{2},.) - B_{\frac{t+a}{2},\pi}(\vec{U}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\pi}(\vec{V}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\tilde{\pi}}(\vec{u},\vec{U}_{\epsilon}) \\ - B_{\frac{t+a}{2},\tilde{\pi}}(\vec{u},\vec{V}_{\epsilon}) - B_{\frac{t+a}{2},\rho}(\vec{U}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\rho}(\vec{V}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{V}_{\epsilon},\vec{u}) \\ - B_{\frac{t+a}{2},\tilde{\pi}}(\vec{u},\vec{V}_{\epsilon}) - B_{\frac{t+a}{2},\rho}(\vec{U}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\rho}(\vec{V}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{u}) \\ - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{u},\vec{V}_{\epsilon}) - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{u}) \\ - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{u},\vec{V}_{\epsilon}) - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{u}) - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{u}) \\ - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{u},\vec{V}_{\epsilon}) \\ - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{u},\vec{V}_{\epsilon}) - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{U}_{\epsilon}) \\ - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{u},\vec{V}_{\epsilon}) \\ - B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{U}_{\epsilon}) \\ - B_$$

We then use (70) to get that

$$A_1 = \|(Id - S_0) \left( B_{\frac{t+a}{2},\pi}(\vec{U}_{\epsilon}, \vec{u}) + B_{\frac{t+a}{2},\tilde{\pi}}(\vec{u}, \vec{U}_{\epsilon}) + B_{\frac{t+a}{2},\rho}(\vec{U}_{\epsilon}, \vec{u}) + B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon}, \vec{u}) \right) \|_{B_{\infty}^{\sigma,\infty}}$$

is controlled by

$$(72) A_1 \le C_{\sigma} \sup_{(a+t)/2 < s < t} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}} \sup_{(a+t)/2 < s < t} \|\vec{U}_{\epsilon}\|_{B_{\infty}^{-1,\infty}} \le \epsilon C_{\sigma} \sup_{(a+t)/2 < s < t} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}}$$

Similarly, we use (71) to get that

$$A_{2} = \|(Id - S_{0}) \left(B_{\frac{t+a}{2},\pi}(\vec{V}_{\epsilon}, \vec{u}) + B_{\frac{t+a}{2},\tilde{\pi}}(\vec{u}, \vec{V}_{\epsilon}) + B_{\frac{t+a}{2},\rho}(\vec{V}_{\epsilon}, \vec{u}) + B_{\frac{t+a}{2},\tilde{\rho}}(\vec{V}_{\epsilon}, \vec{u})\right)\|_{B_{\infty}^{\sigma,\infty}}$$

is controlled by

$$(73) A_2 \leq C_{\sigma} \sqrt{\frac{t-a}{2}} \sup_{(a+t)/2 < s < t} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}} \sup_{(a+t)/2 < s < t} \|\vec{V}_{\epsilon}\|_{\infty} \leq M_{\epsilon} C_{\sigma} \sqrt{\frac{t-a}{2}} \sup_{(a+t)/2 < s < t} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}}.$$

For the low frequencies, we just write that

$$\|e^{(t-s)\Delta}\mathbb{P}\vec{\nabla}\cdot\vec{f}\otimes\vec{g}\|_{\infty} \leq C(t-s)^{-1/2}\|\vec{f}\otimes\vec{g}\|_{\infty}$$

and get that

$$A_{3} = \|S_{0}(B_{\frac{t+a}{2},\pi}(\vec{U}_{\epsilon},\vec{u}) + B_{\frac{t+a}{2},\tilde{\pi}}(\vec{u},\vec{U}_{\epsilon}) + B_{\frac{t+a}{2},\rho}(\vec{U}_{\epsilon},\vec{u}) + B_{\frac{t+a}{2},\tilde{\rho}}(\vec{U}_{\epsilon},\vec{u}))\|_{B_{\infty}^{\sigma,\infty}}$$

is controlled by

$$(74) \quad A_3 \le C_{\sigma} \sqrt{\frac{t-a}{2}} \sup_{\frac{a+t}{2} < s < t} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}} \sup_{\frac{a+t}{2} < s < t} \|\vec{U}_{\epsilon}\|_{B_{\infty}^{-1,\infty}} \le \epsilon C_{\sigma} \sqrt{\frac{t-a}{2}} \sup_{\frac{a+t}{2} < s < t} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}}$$

and that

$$A_4 = \|S_0 \left( B_{\frac{t+a}{2},\pi}(\vec{V_{\epsilon}}, \vec{u}) + B_{\frac{t+a}{2}\tilde{\pi}}(\vec{u}, \vec{V_{\epsilon}}) + B_{\frac{t+a}{2},\rho}(\vec{V_{\epsilon}}, \vec{u}) + B_{\frac{t+a}{2},\tilde{\rho}}(\vec{V_{\epsilon}}, \vec{u}) \right) \|_{B_{\infty}^{\sigma,\infty}}$$

is controlled by

$$(75) A_4 \le C_{\sigma} \sqrt{\frac{t-a}{2}} \sup_{\frac{a+t}{2} < s < t} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}} \sup_{\frac{a+t}{2} < s < t} \|\vec{V}_{\epsilon}\|_{\infty} \le M_{\epsilon} C_{\sigma} \sqrt{\frac{t-a}{2}} \sup_{\frac{a+t}{2} < s < t} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}}.$$

Moreover, we have

$$\|e^{\frac{t-a}{2}\Delta}\vec{u}(\frac{t+a}{2},.)\|_{B^{\sigma,\infty}_{\infty}} \leq \|e^{\frac{t-a}{2}\Delta}\vec{U}_{\epsilon}(\frac{t+a}{2},.)\|_{B^{\sigma,\infty}_{\infty}} + \|e^{\frac{t-a}{2}\Delta}\vec{V}_{\epsilon}(\frac{t+a}{2},.)\|_{B^{\sigma,\infty}_{\infty}},$$

hence

$$(76) (t-a)^{\frac{1+\sigma}{2}} \|e^{\frac{t-a}{2}\Delta} \vec{u}(\frac{t+a}{2},.)\|_{B_{\infty}^{\sigma,\infty}} \le C_{\sigma} \left( \epsilon (1+(t-a)^{\frac{1+\sigma}{2}}) + M_{\epsilon} (\sqrt{t-a} + (t-a)^{\frac{1+\sigma}{2}}) \right)$$

Thus, we find that, for a constant  $D_{\sigma}$  which depend neither on a nor on c nor on  $\epsilon$ , we have :

(77) 
$$\omega_{\sigma}(a,c) \leq D_{\sigma} \Big( \Omega_{\sigma,\epsilon}(a,c) + \big( \epsilon + (M_{\epsilon} + \epsilon) \sqrt{c-a} \big) \omega_{\sigma}(a,c) \Big)$$

with

(78) 
$$\Omega_{\sigma,\epsilon}(a,c) = \epsilon (1 + (c-a)^{\frac{1+\sigma}{2}}) + M_{\epsilon}(\sqrt{c-a} + (c-a)^{\frac{1+\sigma}{2}}).$$

Thus, if we choose  $\epsilon$  small enough to grant that  $D_{\sigma}\epsilon < 1/4$  and then we choose  $c_{\epsilon}^*$  small enough to grant that  $(M_{\epsilon} + \epsilon)\sqrt{c_{\epsilon}^*} < \epsilon$  and  $\epsilon c_{\epsilon}^* \frac{1+\sigma}{2} + M_{\epsilon}(\sqrt{c_{\epsilon}^*} + c_{\epsilon}^* \frac{1+\sigma}{2}) < \epsilon$ , we find for  $0 < a < c_{\epsilon}^*$ 

(79) 
$$\sup_{a < t < c_{\epsilon}^*} (t - a)^{\frac{1+\sigma}{2}} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}} \le 4D_{\sigma} \epsilon.$$

Letting a go to 0, we get

(80) 
$$\sup_{0 < t < c_{\epsilon}^*} t^{\frac{1+\sigma}{2}} \|\vec{u}\|_{B_{\infty}^{\sigma,\infty}} \le 4D_{\sigma} \epsilon.$$

and by interpolation (since  $||f||_{\infty} \leq C_{\sigma} ||f||_{B_{\infty}^{\sigma,\infty}}^{\frac{1}{1+\sigma}} ||f||_{B_{\infty}^{-1,\infty}}^{\frac{\sigma}{1+\sigma}}$ )

(81) 
$$\sup_{0 < t < c_{\epsilon}^*} t^{1/2} \|\vec{u}\|_{\infty} \le C_{\sigma} \epsilon^{\frac{1}{1+\sigma}} \sup_{0 < t < c_{\epsilon}^*} \|\vec{u}\|_{B_{\infty}^{-1,\infty}}^{\frac{\sigma}{1+\sigma}}.$$

Thus, Lemma 9 is proved.

# 7. Uniqueness of the weak solution.

We may now finish the proof of Theorem 3 (and of Theorem 2, due to Lemma 3) with this easy lemma:

#### Lemma 10:

Let  $\vec{u}$  and  $\vec{v}$  be two solutions of the Navier-Stokes equations (63) such that i)  $\vec{u}$  and  $\vec{v}$  belong to  $L^p([0,T],L^q(\mathbb{R}^3))$  with  $2 , <math>1 \le q \le \infty$  and

ii)  $\sup_{0 < t < T} \sqrt{t} \|\vec{u}(t,.)\|_{\infty} < \infty$  and  $\lim_{t \to 0} \sqrt{t} \|\vec{u}(t,.)\|_{\infty} = 0$ . iii)  $\sup_{0 < t < T} \sqrt{t} \|\vec{v}(t,.)\|_{\infty} < \infty$  and  $\lim_{t \to 0} \sqrt{t} \|\vec{v}(t,.)\|_{\infty} = 0$ .

 $iv) \ \vec{u}(0,.) = \vec{v}(0,.).$ 

Then  $\vec{u} = \vec{v}$  on [0, T].

**Proof:** Once again, we write  $\vec{w} = \vec{u} - \vec{v}$ ; then we have

(82) 
$$\vec{w} = -B_0(\vec{w}, \vec{u}) - B_0(\vec{v}, \vec{w})$$

We write

(83) 
$$||e^{(t-s)\Delta} \mathbb{P} \vec{\nabla} \cdot \vec{w} \otimes \vec{u}||_q \le C \frac{1}{\sqrt{t-s}\sqrt{s}} ||\vec{w}||_q \sqrt{s} ||\vec{u}||_{\infty}.$$

Since

$$f \to \int_0^t \frac{1}{\sqrt{t-s}\sqrt{s}} f(s) \ ds$$

is bounded on  $L^p$  for  $p \in (2, \infty]$ , we get, for  $c \in (0, T]$ 

$$\|\vec{w}\|_{L^{p}([0,c],L^{q})} \leq C_{p} \|\vec{w}\|_{L^{p}([0,c],L^{q})} (\sup_{0 < s < c} \sqrt{s} \|\vec{u}(s,.)\|_{\infty} + \sup_{0 < s < c} \sqrt{s} \|\vec{v}(s,.)\|_{\infty}).$$

From (84), we get that, for c close enough to 0,  $\vec{w} = 0$  on [0, c]. Thus, we have local uniqueness. This uniqueness can be propagated ( $\vec{u}$  and  $\vec{v}$  being weakly continuous as time-dependent distributions on  $\mathbb{R}^3$ ) to the whole [0,T].

# 8. Uniformly vanishing high frequencies.

We now explain a criterion to check continuity in the Besov norm. In most cases, this can be checked by establishing some uniform smallness in high frequencies.

#### Definition 2:

A distribution  $u \in \mathcal{D}'((0,T) \times \mathbb{R}^3)$  such that  $t \mapsto u(t,.)$  is weakly continuous from [0,T] to  $\mathcal{D}'(\mathbb{R}^3)$  and satisfies

$$\sup_{0 < t < T} \|u(t,.)\|_{B_{\infty}^{-1,\infty}} < \infty$$

has uniformly vanishing high frequencies if it satisfies

$$\lim_{j \to \infty} \sup_{0 < t < T} 2^{-j} ||\Delta_j u(t, .)||_{\infty} = 0$$

This uniform vanishing condition may be viewed equivalently in the following ways:

### Lemma 11:

Let u be a distribution in  $\mathcal{D}'((0,T)\times\mathbb{R}^3)$  such that  $t\mapsto u(t,.)$  is weakly continuous from [0,T] to  $\mathcal{D}'(\mathbb{R}^3)$  and satisfies

(85) 
$$\sup_{0 < t < T} \|u(t,.)\|_{B_{\infty}^{-1,\infty}} < \infty.$$

Then the following assertions are equivalent:

(A) u has uniformly vanishing high frequencies :

(86) 
$$\lim_{j \to \infty} \sup_{0 < t < T} 2^{-j} ||\Delta_j u(t, .)||_{\infty} = 0$$

(B)  $e^{\theta \Delta}u$  is uniformly small for small  $\theta$ 's:

(87) 
$$\lim_{\theta \to 0} \sup_{0 < t < T} \sqrt{\theta} \|e^{\theta \Delta} u(t, .)\|_{\infty} = 0$$

(C) For every  $\epsilon > 0$ , u may be decomposed as a sum of a uniformly bounded function and a distribution whose Besov norm is less than  $\epsilon$ :

(88) 
$$u = U_{\epsilon} + V_{\epsilon} \text{ with } \sup_{0 < t < T} \|U_{\epsilon}(t,.)\|_{B_{\infty}^{-1,\infty}} < \epsilon \text{ and } \sup_{0 < t < T} \|V_{\epsilon}(t,.)\|_{\infty} < \infty$$

**Proof**:  $(A) \Rightarrow (C)$  is easy: we use the Littlewood–Paley decomposition and we write  $u = U_j + V_j$  with  $V_j = S_j u$  and  $U_j = \sum_{k=j}^{+\infty} \Delta_k u$ . Then we have

$$||V_j(t,.)||_{\infty} \le C2^j ||u(t,.)||_{B_{\infty}^{-1,\infty}}$$

and

$$||U_j(t,.)||_{B_{\infty}^{-1,\infty}} \le C \sup_{k \ge j} 2^k ||\Delta_k u(t,.)||_{\infty}.$$

 $(C) \Rightarrow (B)$  is obvious: if  $u = U_{\epsilon} + V_{\epsilon}$ , we have

$$\sqrt{\theta} \|e^{\theta \Delta} u(t,.)\|_{\infty} \leq \sqrt{\theta} \|V_{\epsilon}(t,.)\|_{\infty} + C \|U_{\epsilon}(t,.)\|_{B_{\infty}^{-1,\infty}}.$$

 $(B) \Rightarrow (A)$  is classical: we write  $\Delta_j u = e^{-4^{-j}\Delta} \Delta_j e^{4^{-j}\Delta} u$  and we find that

$$\|\Delta_j u(t,.)\|_{\infty} \le C \|e^{4^{-j}\Delta} u(t,.)\|_{\infty}.$$

Thus, Lemma 11 is proved.

We may now state our criterion:

### Theorem 4:

Let  $\vec{u}$  be a solution of the Navier-Stokes equations

(89) 
$$\begin{cases} \exists p \in \mathcal{D}'((0,T) \times \mathbb{R}^3) & \partial_t \vec{u} = \Delta \vec{u} - \vec{\nabla}. \ (\vec{u} \otimes \vec{u}) - \vec{\nabla}p \\ \vec{\nabla}. \vec{u} = 0 \end{cases}$$

such that  $\vec{u}$  belongs to  $L^p([0,T],L^q(\mathbb{R}^3))$  for some  $p \in [2,\infty)$  and  $q \in [3,\infty)$ . Then the following assertions are equivalent:

- (A)  $\vec{u}$  belongs to  $\mathcal{C}([0,T], B_{\infty}^{-1,\infty})$ .
- $(B)\ u$  is bounded in the Besov norm and has uniformly vanishing high frequencies:

$$\sup_{0 < t < T} \|\vec{u}(t,.)\|_{B_{\infty}^{-1,\infty}} < \infty \ and \ \lim_{j \to \infty} \sup_{0 < t < T} 2^{-j} \|\Delta_j \vec{u}(t,.)\|_{\infty} = 0.$$

**Proof**: We have already seen that  $(A) \Rightarrow (B)$  (since  $L^q \subset \tilde{B}_{\infty}^{-1,\infty}$ ). Conversely, let us assume that (B) is satisfied. Then  $\vec{u}(0,.)$  belongs to  $B_{\infty}^{-1,\infty}$ . If  $\vec{u}_j = S_j \vec{u}$ , we have  $\vec{u}_j(0,.) \in B_{\infty}^{-1,\infty}$  and  $\partial_t \vec{u}_j \in L^1([0,T], B_{\infty}^{-1,\infty})$ :

$$\|\partial_t \vec{u}_j(t,.)\|_{B_{\infty}^{-1,\infty}} = \|S_j \partial_t \vec{u}(t,.)\|_{B_{\infty}^{-1,\infty}} \le C_q(2^{2j} \|\vec{u}(t,.)\|_q + 2^j \max(1, 2^{\frac{j(6-q)}{q}}) \|\vec{u}(t,.)\|_q^2).$$

Hence, we find that  $\vec{u}_j$  belongs to  $\mathcal{C}([0,T], B_{\infty}^{-1,\infty})$ . Since  $\vec{u}_j$  converges uniformly in t to  $\vec{u}$  in the Besov norm, we find that  $\vec{u}$  belongs to  $\mathcal{C}([0,T], B_{\infty}^{-1,\infty})$ . Theorem 4 is proved.

# 9. The case of $L^{\infty}L^3$ solutions.

Following similar lines, we can deal with  $L^{\infty}L^3$  solutions:

# Theorem 5:

Let  $\vec{u}$  be a solution of the Navier-Stokes equations

(90) 
$$\begin{cases} \exists p \in \mathcal{D}'((0,T) \times \mathbb{R}^3) & \partial_t \vec{u} = \Delta \vec{u} - \vec{\nabla}. \ (\vec{u} \otimes \vec{u}) - \vec{\nabla}p \\ \vec{\nabla}. \vec{u} = 0 \end{cases}$$

such that  $\vec{u}$  belongs to  $L^{\infty}([0,T], L^3(\mathbb{R}^3)) \cap \mathcal{C}([0,T], B_{\infty}^{-1,\infty})$ . Then  $\vec{u}$  belongs to  $\mathcal{C}([0,T], L^3)$ .

#### **Proof:** We write

(91) 
$$\vec{u} = e^{t\Delta} \vec{u}_0 + \vec{w} \text{ with } \vec{w} = -B_0(\vec{u}, \vec{u}).$$

We write

(92) 
$$\|\frac{1}{\sqrt{-\Delta}}(\vec{u}\otimes\vec{u})\|_{\dot{B}_{3/2}^{1,\infty}} \le C\|\vec{u}\|_{3}^{2}$$

hence

(93) 
$$\sup_{0 < t < T} \|\vec{w}\|_{\dot{B}_{3/2}^{1,\infty}} \le C \sup_{0 < t < T} \|\vec{u}\|_{3}^{2}.$$

On the other hand, we have

(94) 
$$\sup_{0 < t < T} \|\vec{w}\|_{3/2} \le C\sqrt{T} \sup_{0 < t < T} \|\vec{u}\|_3^2.$$

Moreover, by weak continuity of  $\vec{u}$  in  $L^3$ , we find that  $\vec{u}_0 \in L^3$ , hence  $e^{t\Delta}\vec{u}_0 \in \mathcal{C}([0,T],L^3)$ . Thus,  $\vec{w} \in L^{\infty}([0,T],B_{3/2}^{1,\infty}) \cap \mathcal{C}([0,T],B_{\infty}^{-1,\infty})$ . This implies that  $\vec{w} \in \mathcal{C}([0,T],L^{3,\infty})$ . Indeed, if  $f \in B_{3/2}^{1,\infty} \cap B_{\infty}^{-1,\infty}$ , we have  $S_0 f \in L^3$  with

$$||S_0 f||_3 \le \sqrt{||S_0 f||_{3/2} ||S_0 f||_{\infty}} \le C \sqrt{||f||_{B_{3/2}^{1,\infty}} ||f||_{B_{\infty}^{-1,\infty}}};$$

for  $j \geq 0$ , we have

$$\|\Delta_j f\|_{3/2} \le C2^{-j} \|f\|_{B_{3/2}^{1,\infty}}$$
 and  $\|\Delta_j f\|_{\infty} \le C2^j \|f\|_{B_{\infty}^{-1,\infty}}$ 

which gives (since  $L^{3,\infty} = [L^{3/2}, L^{\infty}]_{1/2,\infty}$ )

$$||(Id - S_0)f||_3 \le C\sqrt{||f||_{B_{3/2}^{1,\infty}}||f||_{B_{\infty}^{-1,\infty}}}.$$

Thus far, we got that  $\vec{u} \in \mathcal{C}([0,T], L^{3,\infty}) \cap L^{\infty}([0,T], L^3)$ . By weak continuity,  $\vec{u}(t,.)$  belongs to  $L^3$  for all  $t \in [0,T]$ , hence  $\vec{u}(t,.) \in \tilde{L}^{3,\infty}$  (the closure of the test functions in  $L^{3,\infty}$ . But we have uniqueness in the class  $\mathcal{C}([0,T], \tilde{L}^{3,\infty})$ , as it was proved by Meyer [MEY 99]. It is then easy to conclude that the Kato solution coincides with  $\vec{u}$ .

#### References.

[ADA 96] D. R. ADAMS & L. I. HEDBERG, Function spaces and potential theory, Springer, 1996.

[CHE 99] J. Y. CHEMIN, Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math. 77 (1999), pp. 27–50.

[FUR 00] G. FURIOLI, P. G. LEMARIÉ-RIEUSSET & E. TERRANEO, Unicité dans  $L^3(\mathbb{R}^3)$  et d'autres espaces limites pour Navier-Stokes, Revista Mat. Iberoamer. 16 (2000), pp. 605-667.

[GER 96] P. GÉRARD, Y. MEYER & F. ORU, Inégalités de Sobolev précisées, Équations aux Dérivées Partielles 1996-1997, Séminaire de l'École Polytechnique, exposé n° 4.

[HED 72] L. I. HEDBERG, On certain convolution inequalities, *Proc. Amer. Math. Soc.* 10 (1972), pp. 505–510.

[KAT 84] T. KATO, Strong  $L^p$  solutions of the Navier–Stokes equations in  $\mathbb{R}^m$  with applications to weak solutions, *Math. Zeit.* 187 (1984), pp. 471–480.

[KOZ 97] H. KOZONO & H. SOHR, Regularity criterion on weak solutions to the Navier–Stokes equations, Adv. Differential Eq. 2 (1997), pp. 535–554.

[KOZ 04] H. KOZONO & Y. SHIMADA, Bilinear estimates in homogeneous Triebel–Lizorkin spaces and the Navier–Stokes equations, *Math. Nachr.* 276 (2004), pp. 63–74.

[LEM 02] P. G. LEMARIÉ-RIEUSSET, Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC, 2002.

[MAY 03] R. MAY, Rôle de l'espace de Besov  $B_{\infty}^{-1,\infty}$  dans le contrôle de l'explosion éventuelle en temps fini des solutions régulières des équations de Navier–Stokes, *Comptres Rendus Math.* 336 (2003), pp. 731-734.

[MEY 99] MEYER, Y., Wavelets, paraproducts and Navier–Stokes equations, Current developments in mathematics 1996; International Press: PO Box 38-2872, Cambridge, MA 02238-2872, 1999.

[WAH 85] W. VON WAHL, The equations of Navier-Stokes and abstract parabolic equations, Vieweg & Sohn, 1985.