On \(\mathbb{R}^d \)-valued peacocks

Francis HIRSCH\(^{(1)}\), Bernard ROYNETTE\(^{(2)}\)

July 26, 2011

\(^{(1)}\) Laboratoire d’Analyse et Probabilités,
Université d’Évry - Val d’Essonne, Boulevard F. Mitterrand,
F-91025 Évry Cedex
e-mail: francis.hirsch@univ-evry.fr

\(^{(2)}\) Institut Elie Cartan,
Université Henri Poincaré, B.P. 239,
F-54506 Vandœuvre-lès-Nancy Cedex
e-mail: bernard.roynette@iecn.u-nancy.fr

Abstract: In this paper, we consider \(\mathbb{R}^d \)-valued integrable processes which are increasing in the convex order, i.e. \(\mathbb{R}^d \)-valued peacocks in our terminology. After the presentation of some examples, we show that an \(\mathbb{R}^d \)-valued process is a peacock if and only if it has the same one-dimensional marginals as an \(\mathbb{R}^d \)-valued martingale. This extends former results, obtained notably by V. Strassen (1965), J.L. Doob (1968) and H. Kellerer (1972).

Key words: convex order; martingale; 1-martingale; peacock.

1 Introduction

1.1 Terminology

First we fix the terminology. In the sequel, \(d \) denotes a fixed integer and \(\mathbb{R}^d \) is equipped with a norm which is denoted by \(| \cdot | \).

We say that two \(\mathbb{R}^d \)-valued processes: \((X_t, t \geq 0) \) and \((Y_t, t \geq 0) \) are associated, if they have the same one-dimensional marginals, i.e. if:

\[\forall t \geq 0, \quad X_t \overset{\text{law}}{=} Y_t. \]

A process which is associated with a martingale is called a \(1 \)-martingale.

An \(\mathbb{R}^d \)-valued process \((X_t, t \geq 0) \) will be called a peacock if:
i) it is integrable, that is:
\[\forall t \geq 0, \quad \mathbb{E}[|X_t|] < \infty \]

ii) it increases in the convex order, meaning that, for every convex function
\(\psi : \mathbb{R}^d \rightarrow \mathbb{R} \), the map:
\[t \geq 0 \rightarrow \mathbb{E}[\psi(X_t)] \in (-\infty, +\infty] \]
is increasing.

This terminology was introduced in [HPRY]. We refer the reader to this monograph for an explanation of the origin of the term: "peacock", as well as for a comprehensive study of this notion in the case \(d = 1 \).

Actually, it may be noted that, in the definition of a peacock, only the family \((\mu_t, t \geq 0)\) of its one-dimensional marginals is involved. This makes it natural, in the following, to also call a peacock, a family \((\mu_t, t \geq 0)\) of probability measures on \(\mathbb{R}^d \) such that:

i) \(\forall t \geq 0, \quad \int |x| \mu_t(dx) < \infty \),

ii) for every convex function \(\psi : \mathbb{R}^d \rightarrow \mathbb{R} \), the map:
\[t \geq 0 \rightarrow \int \psi(x) \mu_t(dx) \in (-\infty, +\infty] \]
is increasing.

Likewise, a family \((\mu_t, t \geq 0)\) of probability measures on \(\mathbb{R}^d \) and an \(\mathbb{R}^d\)-valued process \((Y_t, t \geq 0)\) will be said to be associated if, for every \(t \geq 0 \), the law of \(Y_t \) is \(\mu_t \), i.e. if \((\mu_t, t \geq 0)\) is the family of the one-dimensional marginals of \((Y_t, t \geq 0)\).

Obviously, the above notions also are meaningful if one considers processes and families of measures indexed by a subset of \(\mathbb{R}_+ \) (for example \(\mathbb{N} \)) instead of \(\mathbb{R}_+ \).

It is an easy consequence of Jensen’s inequality that an \(\mathbb{R}^d\)-valued process which is a 1-martingale, is a peacock. So, a natural question is whether the converse holds.
1.2 Case $d = 1$

A remarkable result due to H. Kellerer ([K], 1972) states that, actually, any \mathbb{R}-valued process which is a peacock, is a 1-martingale. More precisely, Kellerer’s result states that any \mathbb{R}-valued peacock admits an associated martingale which is Markovian.

Two more recent results now complete Kellerer’s theorem.

i) G. Lowther ([L], 2008) states that if $(\mu_t, t \geq 0)$ is an \mathbb{R}-valued peacock such that the map: $t \mapsto \mu_t$ is weakly continuous (i.e. for any \mathbb{R}-valued, bounded and continuous function f on \mathbb{R}, the map: $t \mapsto \int f(x) \mu_t(dx)$ is continuous), then $(\mu_t, t \geq 0)$ is associated with a strongly Markovian martingale which moreover is “almost-continuous” (see [L] for the definition).

ii) In a previous paper ([HR], 2011), we presented a new proof of the above mentioned theorem of H. Kellerer. Our method, which is inspired from the “Fokker-Planck Equation Method” ([HPRY, Section 6.2, p.229]), then appears as a new application of M. Pierre’s uniqueness theorem for a Fokker-Planck equation ([HPRY, Theorem 6.1, p.223]). Thus, we show that a martingale which is associated to an \mathbb{R}-valued peacock, may be obtained as a limit of solutions of stochastic differential equations. However, we do not obtain that such a martingale is Markovian.

1.3 Case $d \geq 1$

Concerning the case \mathbb{R}^d with $d \geq 1$, and even much more general spaces, we would like to mention the following three important papers.

i) In [CFM] (1964), P. Cartier, J.M.G. Fell and P.-A. Meyer study the case of two probability measures (μ_1, μ_2) on a metrizable convex compact K of a locally convex space. They prove, using the Hahn-Banach theorem, that, if (μ_1, μ_2) is a K-valued peacock (indexed by $\{1, 2\}$), then there exists a Markovian kernel P on K such that: $\theta(dx_1, dx_2) := \mu_1(dx_1) P(x_1, dx_2)$ is the law of a K-valued martingale (Y_1, Y_2) associated to (μ_1, μ_2).

ii) In [S] (1965), V. Strassen extends the Cartier-Fell-Meyer result to \mathbb{R}^d-valued peacocks without making the assumption of compact support. Then he proves that, if $(\mu_n, n \geq 0)$ is an \mathbb{R}^d-valued peacock (indexed by \mathbb{N}), there exists an associated martingale which is obtained as a Markov chain.
iii) In [D] (1968), J.L. Doob studies, in a very general extended framework, peacocks indexed by \(\mathbb{R}_+ \) and taking their values in a fixed compact set. In particular, he proves that they admit associated martingales. Note that in [D], the Markovian character of the associated martingales is not considered.

1.4 Organization

The remainder of this paper is organised as follows:

- In Section 2, we present some basic facts concerning the \(\mathbb{R}^d \)-valued peacocks and we describe some examples, thus extending results of [HPRY].

- In Section 3, starting from Strassen’s theorem, we prove that a family \((\mu_t, t \geq 0)\) of probability measures on \(\mathbb{R}^d \), is associated to a right-continuous martingale, if and only if, \((\mu_t, t \geq 0)\) is a peacock such that the map: \(t \rightarrow \mu_t \) is weakly right-continuous on \(\mathbb{R}_+ \).

- In Section 4, by approximation from the previous result, we extend this result to the case of general \(\mathbb{R}^d \)-valued peacocks.

2 Generalities, Examples

2.1 Notation

In the sequel, \(d \) denotes a fixed integer, \(\mathbb{R}^d \) is equipped with a norm which is denoted by \(\cdot \), and we adopt the terminology of Subsection 1.1.

We also denote by \(\mathcal{M} \) the set of probability measures on \(\mathbb{R}^d \), equipped with the topology of weak convergence (with respect to the space \(C_b(\mathbb{R}^d) \) of \(\mathbb{R} \)-valued, bounded, continuous functions on \(\mathbb{R}^d \)). We denote by \(\mathcal{M}_f \) the subset of \(\mathcal{M} \) consisting of measures \(\mu \in \mathcal{M} \) such that \(\int |x| \mu(dx) < \infty \). \(\mathcal{M}_f \) is also equipped with the topology of weak convergence.

\(C_c(\mathbb{R}^d) \) denotes the space of \(\mathbb{R} \)-valued continuous functions on \(\mathbb{R}^d \) with compact support, and \(C_c^+(\mathbb{R}^d) \) is the subspace consisting of all the nonnegative functions in \(C_c(\mathbb{R}^d) \).
2.2 Basic facts

Proposition 2.1 Let \((X_t, t \geq 0)\) be an \(\mathbb{R}^d\)-valued integrable process. Then \((X_t, t \geq 0)\) is a peacock if (and only if) the map: \(t \mapsto \mathbb{E}[\psi(X_t)]\) is increasing, for every function \(\psi : \mathbb{R}^d \to \mathbb{R}\) which is convex, of \(C^\infty\) class and such that the derivative \(\psi'\) is bounded on \(\mathbb{R}^d\).

Proof Let \(\psi : \mathbb{R}^d \to \mathbb{R}\) be a convex function. For every \(a \in \mathbb{R}^d\), there exists an affine function \(h_a\) such that:

\[\forall x \in \mathbb{R}^d, \quad \psi(x) \geq h_a(x)\quad \text{and} \quad \psi(a) = h_a(a).\]

Let \(\{a_n; n \geq 1\}\) be a countable dense subset of \(\mathbb{R}^d\). We set:

\[\forall n \geq 1, \quad \psi_n(x) = \sup_{1 \leq j \leq n} h_{a_j}(x).\]

Then:

\[\forall x \in \mathbb{R}^d, \quad \lim_{n \uparrow \infty} \psi_n(x) = \psi(x).\]

The functions \(\psi_n\) are convex and Lipschitz continuous.

Let \(\phi\) be a nonnegative function, of \(C^\infty\) class, with compact support and such that \(\int \phi(x) \, dx = 1\). We set, for \(n, p \geq 1\),

\[\forall x \in \mathbb{R}^d, \quad \psi_{n,p}(x) = \int \psi_n \left(x - \frac{1}{p} y \right) \phi(y) \, dy.\]

Clearly, \(\psi_{n,p}\) is convex, of \(C^\infty\) class and Lipschitz continuous. Consequently, its derivative is bounded on \(\mathbb{R}^d\). Moreover, \(\lim_{p \to \infty} \psi_{n,p} = \psi_n\) uniformly on \(\mathbb{R}^d\).

The desired result now follows directly.

\(\square\)

The next result will be useful in the sequel.

Proposition 2.2 Let \((X_t, t \geq 0)\) be an \(\mathbb{R}^d\)-valued peacock. Then:

1. the map: \(t \mapsto \mathbb{E}[X_t]\) is constant;
2. the map: \(t \mapsto \mathbb{E}[[X_t]]\) is increasing, and therefore, for every \(T \geq 0\),

\[\sup_{0 \leq t \leq T} \mathbb{E}[[X_t]] = \mathbb{E}[[X_T]] < \infty;\]
3. for every \(T \geq 0 \), the random variables \((X_t ; 0 \leq t \leq T) \) are uniformly integrable.

Proof Properties 1 and 2 are obvious.

If \(c \geq 0 \),

\[
|x| 1_{|x| \geq c} \leq (2|x| - c)^+ .
\]

As the function \(x \rightarrow (2|x| - c)^+ \) is convex,

\[
\sup_{t \in [0,T]} \mathbb{E} [|X_t| 1_{|X_t| \geq c}] \leq \mathbb{E}[(2|X_T| - c)^+] .
\]

Now, by dominated convergence,

\[
\lim_{c \to +\infty} \mathbb{E}[(2|X_T| - c)^+] = 0 .
\]

Hence, property 3 holds.

\qed

2.3 Examples

The following examples are given in [HPRY] for \(d = 1 \). The proofs given below are essentially the same as in [HPRY].

Proposition 2.3 Let \(X \) be a centered \(\mathbb{R}^d \)-valued random variable. Then \((tX , t \geq 0) \) is a peacock.

Proof Let \(\psi : \mathbb{R}^d \rightarrow \mathbb{R} \) be a convex function, and \(0 \leq s < t \). Then,

\[
\psi(sX) \leq \left(1 - \frac{s}{t}\right) \psi(0) + \frac{s}{t} \psi(tX) .
\]

Since \(X \) is centered, by Jensen’s inequality:

\[
\psi(0) = \psi(\mathbb{E}[tX]) \leq \mathbb{E}[\psi(tX)] .
\]

Hence,

\[
\mathbb{E}[\psi(sX)] \leq \left(1 - \frac{s}{t}\right) \mathbb{E}[\psi(tX)] + \frac{s}{t} \mathbb{E}[\psi(tX)] = \mathbb{E}[\psi(tX)] .
\]

\qed
Proposition 2.4 Let \((X_t, t \geq 0)\) be a family of centered, \(\mathbb{R}^d\)-valued, Gaussian variables. We denote by \(C(t) = (c_{i,j}(t))_{1 \leq i,j \leq d}\) the covariance matrix of \(X_t\). Then, \((X_t, t \geq 0)\) is a peacock if and only if the map:
\(t \mapsto C(t)\) is increasing in the sense of quadratic forms, i.e:
\[
\forall a = (a_1, \ldots, a_d) \in \mathbb{R}^d, \quad t \mapsto \sum_{1 \leq i,j \leq d} c_{i,j}(t) a_i a_j \quad \text{is increasing.}
\]

Proof

1) For every \(a \in \mathbb{R}^d\), the function:
\[
x \in \mathbb{R}^d \mapsto \sum_{1 \leq i,j \leq d} a_i a_j x_i x_j = \left(\sum_{i=1}^{d} a_i x_i \right)^2
\]
is convex. This entails that, if \((X_t, t \geq 0)\) is a peacock, then the map:
\(t \mapsto C(t)\) is increasing in the sense of quadratic forms.

2) Conversely, suppose that the map: \(t \mapsto C(t)\) is increasing in the sense of quadratic forms. By the proof of [HPRY, Theorem 2.16, p.132], there exists a centered \(\mathbb{R}^d\)-valued Gaussian process: \((\Gamma_t = (\Gamma_{1,t}, \ldots, \Gamma_{d,t}), t \geq 0)\), such that:
\[
\forall s,t \geq 0, \; \forall 1 \leq i,j \leq d, \quad E[\Gamma_{i,s} \Gamma_{j,t}] = c_{i,j}(s \wedge t).
\]

Therefrom we deduce that \((\Gamma_t, t \geq 0)\) is a martingale which is associated to \((X_t, t \geq 0)\), and consequently, \((X_t, t \geq 0)\) is a peacock.

\(\Box\)

Corollary 2.1 Let \(A\) be a \(d \times d\) matrix. We consider the \(\mathbb{R}^d\)-valued Ornstein-Uhlenbeck process \((U_t, t \geq 0)\), defined as (the unique) solution, started from 0, of the SDE:
\[
dU_t = dB_t + AU_t \, dt
\]
where \((B_t, t \geq 0)\) denotes a \(d\)-dimensional Brownian motion. Then, \((U_t, t \geq 0)\) is a peacock.
Proof. One has:
\[U_t = \int_0^t \exp((t - s)A) \, dB_s. \]
Hence, for every \(t \geq 0 \), \(U_t \) is a centered, \(\mathbb{R}^d \)-valued Gaussian variable whose covariance matrix is:
\[C(t) = \int_0^t \exp(sA) \exp(sA^*) \, ds \]
where \(A^* \) denotes the adjoint matrix of \(A \). Therefrom it is clear that the map: \(t \rightarrow C(t) \) is increasing in the sense of quadratic forms, and Proposition 2.4 applies.

\[\square \]

Proposition 2.5 Let \((M_t, \ t \geq 0)\) be an \(\mathbb{R}^d \)-valued, right-continuous martingale such that:
\[\forall T > 0, \quad \mathbb{E} \left[\sup_{0 \leq t \leq T} |M_t| \right] < \infty. \]
Then,
1. \((X_t := \frac{1}{t} \int_0^t M_s \, ds ; \ t \geq 0)\) is a peacock,
2. \((\tilde{X}_t := \int_0^t (M_s - M_0) \, ds ; \ t \geq 0)\) is a peacock.

Proof. Using Proposition 2.1, we may use the proof of [HPRY, Theorem 1.4, p.26]. For the convenience of the reader, we reproduce this proof below.

1) Let \(\psi : \mathbb{R}^d \rightarrow \mathbb{R} \) be a convex function, of \(C^\infty \) class and such that the derivative \(\psi' \) is bounded on \(\mathbb{R}^d \). Setting:
\[\tilde{M}_t = \int_0^t s \, dM_s, \]
one has, by integration by parts:
\[X_t = M_t - t^{-1} \tilde{M}_t \quad \text{and} \quad dX_t = t^{-2} \tilde{M}_t \, dt. \]
Denoting by \(\mathcal{F}_s \) the \(\sigma \)-algebra generated by \(\{M_u ; 0 \leq u \leq s\} \), one gets, for \(0 \leq s \leq t \),
\[\mathbb{E}[X_t | \mathcal{F}_s] = X_s + (s^{-1} - t^{-1}) \tilde{M}_s. \]
Consequently, by Jensen’s inequality,
\[
\mathbb{E}[\psi(X_t)] \geq \mathbb{E}[\psi(X_s + (s^{-1} - t^{-1}) \hat{M}_s)] .
\]
Using again the fact that \(\psi \) is convex, one obtains:
\[
\mathbb{E}[\psi(X_t)] \geq \mathbb{E}[\psi(X_s)] + (s^{-1} - t^{-1}) \mathbb{E}[\psi'(X_s) \cdot \hat{M}_s] .
\]
Now,
\[
\psi'(X_s) \cdot \hat{M}_s = \int_0^s u^{-2} \psi''(X_u) (\hat{M}_u, \hat{M}_u) \, du + \int_0^s u \psi'(X_u) \cdot dM_u
\]
and therefore
\[
\mathbb{E}[\psi(X_t)] - \mathbb{E}[\psi(X_s)] \geq (s^{-1} - t^{-1}) \mathbb{E}[\psi'(X_s) \cdot \hat{M}_s] \geq 0 ,
\]
which, by Proposition 2.1, yields the desired result.

2) Let \(\psi \) be as above. One may suppose that \(M_0 = 0 \). One has, for \(0 \leq s \leq t \),
\[
\mathbb{E}[\tilde{X}_t \mid \mathcal{F}_s] = \tilde{X}_s + (t - s) M_s .
\]
Consequently, by Jensen’s inequality,
\[
\mathbb{E}[\psi(\tilde{X}_t)] \geq \mathbb{E}[\psi(\tilde{X}_s + (t - s) M_s)] .
\]
Using again the fact that \(\psi \) is convex, one obtains:
\[
\mathbb{E}[\psi(\tilde{X}_t)] \geq \mathbb{E}[\psi(\tilde{X}_s)] + (t - s) \mathbb{E}[\psi'(\tilde{X}_s) \cdot M_s] .
\]
Now,
\[
\psi'(\tilde{X}_s) \cdot M_s = \int_0^s \psi''(\tilde{X}_u) (M_u, M_u) \, du + \int_0^s \psi'(\tilde{X}_u) \cdot dM_u
\]
and therefore
\[
\mathbb{E}[\psi(\tilde{X}_t)] - \mathbb{E}[\psi(\tilde{X}_s)] \geq (t - s) \mathbb{E}[\psi'(\tilde{X}_s) \cdot M_s] \geq 0 ,
\]
which, by Proposition 2.1, yields the desired result.

\(\square \)
3 Right-continuous peacocks

In this section, we shall show that any right continuous peacock admits an associated right-continuous martingale. For this, we start from Strassen’s theorem, which we now recall.

Theorem 3.1 (Strassen [S], Theorem 8) Let \((\mu_n, n \in \mathbb{N})\) be a sequence in \(\mathcal{M}\). Then \((\mu_n, n \in \mathbb{N})\) is a peacock if and only if there exists a martingale \((M_n, n \in \mathbb{N})\) which is associated to \((\mu_n, n \in \mathbb{N})\).

We shall extend this theorem to right-continuous peacocks indexed by \(\mathbb{R}_+\). In the case \(d = 1\), the following theorem is proven in [HR], by a quite different method. In particular, in [HR], we do not use Strassen’s theorem, nor the Hahn-Banach theorem, but an explicit approximation by solutions of SDE’s.

Theorem 3.2 Let \((\mu_t, t \geq 0)\) be a family in \(\mathcal{M}\). Then the following properties are equivalent:

i) There exists a right-continuous martingale associated to \((\mu_t, t \geq 0)\).

ii) \((\mu_t, t \geq 0)\) is a peacock and the map:

\[
 t \geq 0 \longrightarrow \mu_t \in \mathcal{M}
\]

is right-continuous.

Proof

1) We first assume that property i) is satisfied. Then, the fact that \((\mu_t, t \geq 0)\) is a peacock follows classically from Jensen’s inequality. Let \((M_t, t \geq 0)\) be a right-continuous martingale associated to \((\mu_t, t \geq 0)\). Then, if \(f \in C_b(\mathbb{R}^d)\), dominated convergence yields that, for any \(t \geq 0\),

\[
 \lim_{s \to t, s > t} \int f(x) \mu_s(dx) = \lim_{s \to t, s > t} \mathbb{E}[f(M_s)] = \mathbb{E}[f(M_t)] = \int f(x) \mu_t(dx).
\]

Therefore, the map:

\[
 t \geq 0 \longrightarrow \mu_t \in \mathcal{M}
\]

is right-continuous, and property ii) is satisfied.

2) Conversely, we now assume that property ii) is satisfied. For every \(n \in \mathbb{N}\), we set:

\[
 \mu_k^{(n)} = \mu_{k2^{-n}}, \quad k \in \mathbb{N}.
\]
By Strassen’s theorem (Theorem 3.1), there exists a martingale \((M_k^{(n)}, k \in \mathbb{N})\) which is associated to \((\mu_k^{(n)}, k \in \mathbb{N})\). We set:

\[X_t^{(n)} = M_k^{(n)} \text{ if } t = k2^{-n} \quad \text{and} \quad X_t^{(n)} = 0 \text{ otherwise.}\]

Consequently, the law of \(X_t^{(n)}\) is \(\mu_t\) if \(t \in \{k2^{-n}; k \in \mathbb{N}\}\), and is \(\delta\) (the Dirac measure at 0) if \(t \not\in \{k2^{-n}; k \in \mathbb{N}\}\).

Note that, due to the lack of uniqueness in Strassen’s theorem, the law of \((X_{k2^{-n}}^{(n)}, k \in \mathbb{N})\) may be not the same as the law of \((X_{k2^{-n}}^{(n+1)}, k \in \mathbb{N})\). Only the one-dimensional marginals are identical.

3) Let \(D = \{k2^{-n}; k, n \in \mathbb{N}\}\) the set of dyadic numbers. For every \(n \in \mathbb{N}\), for every \(r \geq 1\) and \(\tau_r = (t_1, t_2, \cdots, t_r) \in D^r\), we denote by \(\Pi_{\tau_r}^{(r,n)}\) the law of \((X_{t_1}^{(n)}, \cdots, X_{t_r}^{(n)})\), a probability on \((\mathbb{R}^d)^r\).

Lemma 3.1 For every \(\tau_r \in D^r\), the set of probability measures: \(\{\Pi_{\tau_r}^{(r,n)}; n \in \mathbb{N}\}\) is tight.

Proof We set, for \(x = (x^1, \cdots, x^r) \in (\mathbb{R}^d)^r\), \(|x|_r = \sum_{j=1}^{r} |x^j|\). Then, for \(p > 0\),

\[\Pi_{\tau_r}^{(r,n)}(|x|_r \geq p) \leq \frac{1}{p} \Pi_{\tau_r}^{(r,n)}(|x|_r) = \frac{1}{p} \sum_{j=1}^{r} \mathbb{E}[|X_{t_j}^{(n)}|] \leq \frac{1}{p} \sum_{j=1}^{r} \mu_{t_j}(|x|)\]

since, by point 2), the law of \(X_{t_j}^{(n)}\) is either \(\mu_{t_j}\) or \(\delta\). Hence,

\[\lim_{p \to \infty} \sup_{n \geq 0} \Pi_{\tau_r}^{(r,n)}(|x|_r \geq p) = 0.\]

4) As a consequence of the previous lemma, and with the help of the diagonal procedure, there exists a subsequence \((n_l)_{l \geq 0}\) such that, for every \(\tau_r \in D^r\), the sequence of probabilities on \((\mathbb{R}^d)^r\): \((\Pi_{\tau_r}^{(r,n_l)}), l \geq 0\), weakly converges to a probability which we denote by \(\Pi_{\tau_r}^{(r)}\). We remark that, for \(l\) large enough, the law of \(X_{t_j}^{(n_l)}\) is \(\mu_{t_j}\). Then, there exists an \(\mathbb{R}^d\)-valued process \((X_t, t \in D)\) such that, for every \(r \in \mathbb{N}\) and every \(\tau_r = (t_1, \cdots, t_r) \in D^r\), the law of \((X_{t_1}, \cdots, X_{t_r})\) is \(\Pi_{\tau_r}^{(r)}\), and \(\Pi_{t}^{(1)} = \mu_t\) for every \(t \in D\).
Lemma 3.2 The process \((X_t, t \in D)\) is a martingale associated to \((\mu_t, t \in D)\).

Proof As we have already seen, the process \((X_t, t \in D)\) is associated to \((\mu_t, t \in D)\). We now prove that it is a martingale. We set:

\[\forall p > 0, \forall x \in \mathbb{R}^d, \quad \varphi_p(x) = \left(1 \lor \frac{|x|}{p}\right)^{-1} x. \]

Then,

\[\varphi_p \in C_b(\mathbb{R}^d; \mathbb{R}^d) \quad \text{and} \quad \varphi_p(x) = x \quad \text{for} \quad |x| \leq p. \]

Let \(0 \leq s_1 < s_2 < \cdots < s_r \leq s \leq t\) be elements of \(D\), and let \(f \in C_b((\mathbb{R}^d)^r)\). We set: \(\|f\|_\infty = \sup\{|f(x)| ; x \in (\mathbb{R}^d)^r\}\). Then, for \(l\) large enough,

\[\mathbb{E}[f(X_s^{(n_1)}, \ldots, X_s^{(n_i)}) X_t^{(n_i)}] = \mathbb{E}[f(X_{s_1}^{(n_1)}, \ldots, X_{s_r}^{(n_i)}) X_s^{(n_i)}]. \]

On the other hand,

\[|\mathbb{E}[f(X_{s_1}, \ldots, X_{s_r}) \varphi_p(X_t)] - \mathbb{E}[f(X_{s_1}, \ldots, X_{s_r}) X_t]| \leq \|f\|_\infty \mu_t \left(|x| 1_{\{|x| \geq p\}}\right), \quad \text{for every} \quad p > 0, \]

and likewise, replacing \(t\) by \(s\). Moreover,

\[\lim_{l \to \infty} \mathbb{E}[f(X_{s_1}^{(n_1)}, \ldots, X_{s_r}^{(n_i)}) \varphi_p(X_t^{(n_i)})] = \mathbb{E}[f(X_{s_1}, \ldots, X_{s_r}) \varphi_p(X_t)], \]

and likewise, replacing \(t\) by \(s\). Finally, we obtain, for \(p > 0,\)

\[|\mathbb{E}[f(X_{s_1}, \ldots, X_{s_r}) X_t] - \mathbb{E}[f(X_{s_1}, \ldots, X_{s_r}) X_s]| \leq 2 \|f\|_\infty \left[\mu_t \left(|x| 1_{\{|x| \geq p\}}\right) + \mu_s \left(|x| 1_{\{|x| \geq p\}}\right)\right], \]

and the desired result follows, letting \(p\) go to \(\infty\).

\[\square \]
5) By the classical theory of martingales (see, for example, [DM]), almost surely, for every \(t \geq 0 \),
\[
M_t = \lim_{s \to t, s \in D, s > t} X_s
\]
is well defined, and \((M_t, t \geq 0)\) is a right-continuous martingale. Besides, since, by hypothesis, the map: \(t \geq 0 \mapsto \mu_t \in \mathcal{M} \) is right-continuous, we deduce from Lemma 3.2 that this martingale \((M_t, t \geq 0)\) is associated to \((\mu_t, t \geq 0)\).

\[\square \]

4 The general case

Theorem 3.2 shall now be extended, by approximation, to the general case.

Theorem 4.1 Let \((\mu_t, t \geq 0)\) be a family in \(\mathcal{M} \). Then the following properties are equivalent:

i) There exists a martingale associated to \((\mu_t, t \geq 0)\).

ii) \((\mu_t, t \geq 0)\) is a peacock.

Proof Let \((\mu_t, t \geq 0)\) be a peacock.

Lemma 4.1 There exists a countable set \(\Delta \subset \mathbb{R}_+ \) such that the map:
\[
t \mapsto \mu_t \in \mathcal{M}
\]
is continuous at any \(s \not\in \Delta \).

Proof Let \(\chi : \mathbb{R}^d \to \mathbb{R}_+ \) be defined by:
\[
\chi(x) = (1 - |x|)^+ = (1 \lor |x|) - |x|.
\]
Then \(\chi \in C^+_c(\mathbb{R}^d) \) and \(\chi \) is the difference of two convex functions. We set:
\[
\chi_m(x) = m^d \chi(mx),
\]
and we define the countable set \(\mathcal{H} \) by:
\[
\mathcal{H} = \left\{ \sum_{j=0}^{r} a_j \chi_m(x - q_j) ; r \in \mathbb{N}, m \in \mathbb{N}, a_j \in \mathbb{Q}_+, q_j \in \mathbb{Q}^d \right\}.
\]
For $h \in H$, the function: $t \mapsto \mu_t(h)$ is the difference of two increasing functions, and hence admits a countable set Δ_h of discontinuities. We set $\Delta = \bigcup_{h \in H} \Delta_h$. Then Δ is a countable subset of \mathbb{R}_+, and $t \mapsto \mu_t(h)$ is continuous at any $s \not\in \Delta$, for every $h \in H$. Now, it is easy to see that H is dense in $C_c^+(\mathbb{R}^d)$ in the following sense: for every $\varphi \in C_c^+(\mathbb{R}^d)$, there exist a compact set $K \subset \mathbb{R}^d$ and a sequence $(h_n)_{n \geq 0} \subset H$ such that:

$$\forall n, \text{ Supp } h_n \subset K \quad \text{and} \quad \lim_{n \to \infty} h_n = \varphi \quad \text{uniformly.}$$

Consequently, $t \mapsto \mu_t$ is vaguely continuous at any $s \not\in \Delta$, and, since measures μ_t are probabilities, $t \mapsto \mu_t$ is also weakly continuous at any $s \not\in \Delta$.

We may write $\Delta = \{d_j ; j \in \mathbb{N}\}$. For $n \in \mathbb{N}$, we denote by $(k_i^{(n)}, l \geq 0)$ the increasing rearrangement of the set:

$$\{k \cdot 2^{-n} ; k \in \mathbb{N}\} \cup \{d_j ; 0 \leq j \leq n\}.$$

We define $(\mu_t^{(n)}, t \geq 0)$ by:

$$\mu_t^{(n)} = \mu_{k_i^{(n)}}$$

if there exists l such that $t = k_i^{(n)}$,

and by:

$$\mu_t^{(n)} = \frac{k_{i+1}^{(n)} - t}{k_{i+1}^{(n)} - k_i^{(n)}} \mu_{k_i^{(n)}} + \frac{t - k_i^{(n)}}{k_{i+1}^{(n)} - k_i^{(n)}} \mu_{k_{i+1}^{(n)}}$$

if $t \in [k_i^{(n)}, k_{i+1}^{(n)}]$.

Lemma 4.2 The following properties hold:

1. For every $n \geq 0$, $(\mu_t^{(n)}, t \geq 0)$ is a peacock and the map: $t \mapsto \mu_t^{(n)} \in \mathcal{M}$ is continuous.

2. For any $t \geq 0$, $\sup\{\mu_t^{(n)}(|x|) ; n \in \mathbb{N}\} < \infty$.

3. For any $t \geq 0$, the set $\{\mu_t^{(n)} ; n \in \mathbb{N}\}$ is uniformly integrable.

4. For $t \geq 0$, $\lim_{n \to \infty} \mu_t^{(n)} = \mu_t \quad \text{in } \mathcal{M}$.

Proof Properties 1 and 4 are clear by construction. Property 2 (resp. property 3) follows directly from property 2 (resp. property 3) in Proposition 2.2.

By Theorem 3.2, there exists, for each n, a right-continuous martingale
\((M_t^{(n)}, t \geq 0)\) which is associated to \((\mu_t^{(n)}, t \geq 0)\). For any \(r \in \mathbb{N}\) and \(\tau_r = (t_1, \cdots, t_r) \in \mathbb{R}_+^r\), we denote by \(\Pi_{\tau_r}^{(r,n)}\) the law of \((M_t^{(n)}, \cdots, M_t^{(n)})\), a probability measure on \((\mathbb{R}^d)^r\).

Lemma 4.3 For every \(\tau_r \in \mathbb{R}_+^r\), the set of probability measures: \(\{\Pi_{\tau_r}^{(r,n)}; n \in \mathbb{N}\}\) is tight.

Proof As in Lemma 3.1, for \(p > 0\),

\[
\Pi_{\tau_r}^{(r,n)}(|x|_r \geq p) \leq \frac{1}{p} \sum_{j=1}^{r} \mu_j^{(n)}(|x|),
\]

and by property 2 in Lemma 4.2,

\[
\lim_{p \to \infty} \sup_{n \geq 0} \Pi_{\tau_r}^{(r,n)}(|x|, |x| \geq p) = 0.
\]

Let now \(U\) be an ultrafilter on \(\mathbb{N}\), which refines Fréchet’s filter. As a consequence of the previous lemma, for every \(r \in \mathbb{N}\) and every \(\tau_r \in \mathbb{R}_+^r\), \(\lim_U \Pi_{\tau_r}^{(r,n)}\) exists for the weak convergence and we denote this limit by \(\Pi_{\tau_r}^{(r)}\).

By property 4 in Lemma 4.2, \(\Pi_{\tau_r}^{(1)} = \mu_t\). There exists a process \((M_t, t \geq 0)\) such that, for every \(r \in \mathbb{N}\) and every \(\tau_r \in \mathbb{R}_+^r\), the law of \((M_{t_1}, \cdots, M_{t_r})\) is \(\Pi_{\tau_r}^{(r)}\). In particular, this process \((M_t, t \geq 0)\) is associated to \((\mu_t, t \geq 0)\).

Lemma 4.4 The process \((M_t, t \geq 0)\) is a martingale.

Proof The proof is quite similar to that of Lemma 3.2, but we give the details for the sake of completeness. We recall the notation:

\[
\forall p > 0, \forall x \in \mathbb{R}^d, \varphi_p(x) = \left(1 \vee \frac{|x|}{p}\right)^{-1} x.
\]

Let \(0 \leq s_1 < s_2 < \cdots < s_r \leq s \leq t\) be elements of \(\mathbb{R}_+\), and let \(f \in C_b((\mathbb{R}^d)^r)\). We set: \(\|f\|_\infty = \sup\{|f(x)|; x \in (\mathbb{R}^d)^r|\}\). Then, for every \(n\),

\[
\mathbb{E}[f(M_{s_1}^{(n)}, \cdots, M_{s_r}^{(n)}) M_t^{(n)}] = \mathbb{E}[f(M_{s_1}^{(n)}, \cdots, M_{s_r}^{(n)}) M_s^{(n)}].
\]

On the other hand,

\[
|\mathbb{E}[f(M_{s_1}, \cdots, M_{s_r}) \varphi_p(M_t)] - \mathbb{E}[f(M_{s_1}, \cdots, M_{s_r}) M_t]| \leq \|f\|_{\infty} \mu_t \left(|x| 1_{(|x| \geq p)}\right), \quad \text{for every } p > 0,
\]

15
\[
\begin{align*}
& \left| \mathbb{E}[f(M_{s_1}^{(n)}, \ldots, M_{s_r}^{(n)}) \varphi_p(M_t^{(n)})] - \mathbb{E}[f(M_{s_1}^{(n)}, \ldots, M_{s_r}^{(n)}) M_t^{(n)}] \right| \\
\leq & \|f\|_\infty \mu_{t}^{(n)} \left(|x| \mathbb{1}_{\{|x| \geq p\}} \right) , \text{ for every } n \text{ and every } p > 0,
\end{align*}
\]
and likewise, replacing \(t \) by \(s \). Moreover,
\[
\lim_{U} \mathbb{E}[f(M_{s_1}^{(n)}, \ldots, M_{s_r}^{(n)}) \varphi_p(M_t^{(n)})] = \mathbb{E}[f(M_{s_1}, \ldots, M_{s_r}) \varphi_p(M_t)] ,
\]
and likewise, replacing \(t \) by \(s \). Finally, we obtain, for \(p > 0 \),
\[
\begin{align*}
& |\mathbb{E}[f(X_{s_1}, \ldots, X_{s_r}) X_t] - \mathbb{E}[f(X_{s_1}, \ldots, X_{s_r}) X_s]| \\
\leq & \ 2 \|f\|_\infty \sup_{n \geq 0} \left[\mu_{t}^{(n)} \left(|x| \mathbb{1}_{\{|x| \geq p\}} \right) + \mu_{s}^{(n)} \left(|x| \mathbb{1}_{\{|x| \geq p\}} \right) \right] ,
\end{align*}
\]
and, by property 3 in Lemma 4.2, the desired result follows, letting \(p \) go to \(\infty \).

This lemma completes the proof of Theorem 4.1.

Acknowledgment We are grateful to Marc Yor for his help during the preparation of this paper.

References

