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1 Introduction

1.1

First we fix the terminology.
We say that two R-valued processes are associated, if they have the same

one-dimensional marginals. A process which is associated with a martingale
is called a 1-martingale.

An R-valued process (Xt , t ≥ 0) is called a peacock (see [HPRY] for
the origin of this term and many examples) if:
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i) it is integrable, that is:

∀t ≥ 0, E[|Xt|] <∞

ii) it increases in the convex order, meaning that, for every convex function
ψ : R −→ R, the map:

t ≥ 0 −→ E[ψ(Xt)] ∈ (−∞,+∞]

is increasing.

Actually, it may be noted that, in the definition of a peacock, only the family
(µt , t ≥ 0) of its one-dimensional marginals is involved. In the following,
we shall also call a peacock, a family (µt , t ≥ 0) of probability measures on
R such that:

i) ∀t ≥ 0,

∫
|x| µt(dx) <∞ ,

ii) for every convex function ψ : R −→ R, the map:

t ≥ 0 −→
∫
ψ(x) µt(dx) ∈ (−∞,+∞]

is increasing.

Likewise, a family (µt , t ≥ 0) of probability measures on R and an R-valued
process (Yt , t ≥ 0) will be said to be associated if, for every t ≥ 0, the law
of Yt is µt, i.e. if (µt , t ≥ 0) is the family of the one-dimensional marginals
of (Yt , t ≥ 0).

1.2

It is an easy consequence of Jensen’s inequality that an R-valued process
(Xt , t ≥ 0) which is a 1-martingale, is a peacock. A remarkable result

due to H. Kellerer ([K], 1972) states that, conversely, any R-valued pro-
cess (Xt , t ≥ 0) which is a peacock, is a 1-martingale. More precisely,
Kellerer’s result states that any peacock admits an associated martingale
which is Markovian.

Recently, G. Lowther ([L], 2008) stated that if (µt , t ≥ 0) is a peacock
such that the map: t −→ µt is weakly continuous (i.e. for any R-valued,
bounded and continuous function f on R, the map: t −→

∫
f(x) µt(dx)

is continuous), then (µt , t ≥ 0) is associated with a strongly Markovian
martingale which moreover is “almost-continuous” (see [L] for the definition).
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1.3

In this paper, our aim is to present a new proof of the above mentioned the-
orem of H. Kellerer, which eventually identifies peacocks and 1-martingales.
Our method is inspired from the “Fokker-Planck Equation Method” ([HPRY,
Section 6.2]) and appears then as a new application of M. Pierre’s uniqueness
theorem for a Fokker-Planck equation ([HPRY, Theorem 6.1]).

1.4

The remainder of this paper is organised as follows:

• In Section 2, we define as usual the call function Cµ of the law µ of
an integrable random variable X, by:

∀x ∈ R, Cµ(x) =

∫
(y − x)+ µ(dy) = E[(X − x)+]

and we present some properties of the correspondence: µ −→ Cµ ,
which are useful in the study of peacocks.

• In Section 3, we prove that a family (µt , t ≥ 0) of probability
measures on R, is associated to a right-continuous martingale, if and
only if, (µt , t ≥ 0) is a peacock such that the map: t −→ µt is
weakly right-continuous on R+.

• In Section 4, by approximation from the previous result, we deduce
Kellerer’s theorem in the general case.

2 Call functions and peacocks

In this section, we fix the notation and the terminology, and we gather some
preliminary results.

2.1 Call functions

In the sequel, we denote by M the set of probability measures on R,
equipped with the topology of weak convergence (with respect to the space
of R-valued, bounded, continuous functions on R).

We denote by Mf the subset ofM consisting of measures µ ∈M such
that

∫
|x| µ(dx) < ∞. Mf is also equipped with the topology of weak

convergence.
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We define, for µ ∈Mf , the call function Cµ by:

∀x ∈ R, Cµ(x) =

∫
(y − x)+ µ(dy) .

Proposition 2.1 If µ ∈Mf , then Cµ satisfies the following properties:

a) Cµ is a convex, nonnegative function on R.

b) limx→+∞Cµ(x) = 0.

c) There exists a ∈ R such that limx→−∞(Cµ(x) + x) = a.

Conversely, if a function C satisfies the above three properties, then there
exists a unique µ ∈ Mf such that C = Cµ. This measure µ is the second
derivative, in the sense of distributions, of the function C.

Proof Clearly, if µ ∈ Mf , then Cµ satisfies properties a), b) and c). For
example, c) follows directly from:

∀x ∈ R, Cµ(x) + x =

∫
sup(y, x) µ(dy)

which tends to a =
∫
y µ(dy) as x→ −∞. Moreover, it is easy to see that

the measure µ is the second derivative, in the sense of distributions, of the
function Cµ.

Conversely, let C be a function satisfying properties a), b) and c). We
define µ as the second derivative, in the sense of distributions, of the function
C. Then µ is a positive measure. Denote by C ′(x) the right derivative, at
x, of the convex function C. By properties a) and b),

∀x ∈ R, C ′(x) ≤ 0 and lim
x→+∞

C ′(x) = 0 .

Therefore, for x ∈ R,

C ′(x) = −
∫

1(x,+∞)(y) µ(dy) .

By property c), limx→−∞C
′(x) = −1 and then µ ∈M.

Besides,

C(x) = −
∫ +∞

x

C ′(y) (dy) =

∫
(y − x)+ µ(dy)

and

C(x) + x =

∫
sup(y, x) µ(dy) .
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Using again property c), we see that µ ∈Mf and C = Cµ.
2

Proposition 2.2 Let µ ∈Mf and set E[µ] =
∫
x µ(dx). Then Cµ satisfies

the following additional properties:

i) ∀x ≤ y, 0 ≤ Cµ(x)− Cµ(y) ≤ y − x .

ii) ∀x, Cµ(x) + x− E[µ] =

∫
(x− y)+ µ(dy) .

iii) lim
x→−∞

(Cµ(x) + x) = E[µ] .

Proof The proposition follows from the following equalities, already seen in
the previous proof:

C ′µ(x) = −
∫

1(x,+∞)(y) µ(dy) ,

Cµ(x) + x =

∫
sup(y, x) µ(dy) .

2

To state the next proposition, we now recall that a subset H of M is said
to be uniformly integrable if

lim
c→+∞

sup
µ∈H

∫
{|x|≥c}

|x| µ(dx) = 0 .

We remark that, if H is uniformly integrable, then

H ⊂Mf and sup{
∫
|x| µ(dx) ; µ ∈ H} <∞ .

Proposition 2.3 Let I be a set and let E be a filter on I. Consider a
uniformly integrable family (µi , i ∈ I) in M, and µ ∈ M. The following
properties are equivalent:

1) lim
E
µi = µ with respect to the topology on M .
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2) µ ∈Mf and
∀x ∈ R, lim

E
Cµi

(x) = Cµ(x) .

3) µ ∈Mf and, for every R-valued continuous function f on R such that

∃a > 0, b > 0, ∀x ∈ R, |f(x)| ≤ a+ b |x| ,

one has:

lim
E

∫
f(x) µi(dx) =

∫
f(x) µ(dx) .

Proof We first assume that property 1) holds. Then∫
|x| µ(dx) ≤ sup{

∫
|x| µi(dx) ; i ∈ I} <∞ ,

and µ ∈Mf . Let f be an R-valued continuous function on R such that

∃a > 0, b > 0, ∀x ∈ R, |f(x)| ≤ a+ b |x| .

We set, for n ∈ N, fn(x) = sup[inf(f, n),−n]. Since fn is continuous and
bounded,

lim
E

∫
fn(x) µi(dx) =

∫
fn(x) µ(dx) .

On the other hand, for n ≥ a,

|f(x)− fn(x)| = (|f(x)| − n)+ ≤ (b |x|+ a− n)+ ≤ b |x| 1{|x|≥n−a
b
} ,

and hence

sup
i∈I

∣∣∣∣∫ f(x) µi(dx)−
∫
fn(x) µi(dx)

∣∣∣∣ ≤ b sup
i∈I

∫
{|x|≥n−a

b
}
|x| µi(dx) .

By uniform integrability, we then obtain:

lim
n→∞

sup
i∈I

∣∣∣∣∫ f(x) µi(dx)−
∫
fn(x) µi(dx)

∣∣∣∣ = 0 .

Finally,∫
f(x) µ(dx) = lim

n→∞
lim
E

∫
fn(x) µi(dx)

= lim
E

lim
n→∞

∫
fn(x) µi(dx) = lim

E

∫
f(x) µi(dx) ,

6



and property 3) is satisfied.
Obviously, property 3) entails property 2).
Suppose then that property 2) holds. By equicontinuity (property i) in

Proposition 2.2),
lim
E
Cµi

(x) = Cµ(x)

uniformly on compact sets of R, and hence in the sense of distributions.
Consequently, since µi (resp. µ) is the second derivative, in the sense of
distributions, of the function Cµi

(resp. Cµ),

lim
E
µi = µ

in the sense of distributions. As µi and µ are probability measures, this en-
tails property 1). 2

2.2 Peacocks

In this subsection, we fix a family (µt , t ≥ 0) in Mf and we define a
function C(t, x) on R+ × R by:

C(t, x) = Cµt(x) .

We recall (see Subsection 1.1) that the family (µt , t ≥ 0) is called a
peacock, if

i) ∀t ≥ 0,

∫
|x| µt(dx) <∞ ,

ii) for every convex function ψ : R −→ R, the map:

t ≥ 0 −→
∫
ψ(x) µt(dx) ∈ (−∞,+∞]

is increasing.

The following characterization is easy to prove and is stated in [HPRY, Ex-
ercise 1.7].

Proposition 2.4 The family (µt , t ≥ 0) is a peacock if and only if:

1. the expectation E[µt] does not depend on t,

2. for every x ∈ R, the function t ≥ 0 −→ C(t, x) is increasing.
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The following proposition plays an important role in the sequel.

Proposition 2.5 Assume that (µt , t ≥ 0) is a peacock, and let T > 0.
Then,

(1) the set {µt ; 0 ≤ t ≤ T} is uniformly integrable,

(2) lim
|x|→∞

sup{C(t, x)− C(s, x) ; 0 ≤ s ≤ t ≤ T} = 0 .

Proof Property (1) is stated in [HPRY, Exercise 1.1]. Actually, it suffices
to remark that, if c ≥ 0,

|x| 1{|x|≥c} ≤ (2 |x| − c)+ .

As the function x −→ (2 |x| − c)+ is convex,

sup
t∈[0,T ]

∫
{|x|≥c}

|x| µt(dx) ≤
∫

(2 |x| − c)+ µT (dx)

Now, by dominated convergence,

lim
c→+∞

∫
(2 |x| − c)+ µT (dx) = 0 .

We have:

sup{C(t, x)− C(s, x) ; 0 ≤ s ≤ t ≤ T} ≤ C(T, x) .

Hence, by property b) in Proposition 2.1,

lim
x→+∞

sup{C(t, x)− C(s, x) ; 0 ≤ s ≤ t ≤ T} = 0 .

On the other hand, since E[µt] does not depend on t,

C(t, x)− C(s, x) = [C(t, x) + x− E[µt]]− [C(s, x) + x− E[µs]]

Now, by property ii) in Proposition 2.2,

C(t, x) + x− E[µt] =

∫
(x− y)+ µt(dy) ,

is therefore nonnegative and increases with respect to t. Hence

sup{C(t, x)− C(s, x) ; 0 ≤ s ≤ t ≤ T} ≤ C(T, x) + x− E[µT ]

and, by property iii) in Proposition 2.2,

lim
x→−∞

sup{C(t, x)− C(s, x) ; 0 ≤ s ≤ t ≤ T} = 0 .

2
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3 Right-continuous peacoks

In this section, we shall prove Kellerer’s theorem for right-continuous pea-
coks. We proceed by regularization, using, for regularized peacocks, the
Fokker-Planck equation method as in [HPRY, Chapter 6]. This method re-
lies heavily on M. Pierre’s uniqueness theorem for a Fokker-Planck equation
([HPRY, Theorem 6.1]).

We first recall the main result in the Fokker-Planck equation method,
namely Theorem 6.2 in [HPRY]. The next statement is a slightly extended
version of this theorem.

Theorem 3.1 (see Theorem 6.2 in [HPRY]) Let U = (0,+∞) × R
and U the closure of U (U = R+ × R). Let σ be a continuous function
on U such that σ(t, x) > 0 for every (t, x) ∈ U . Let µ ∈Mf .

1) The stochastic differential equation

Zt = Z0 +

∫ t

0

σ(s, Zs) dBs

(where Z0 is a random variable with law µ, independent of the Brownian
motion (Bs, s ≥ 0)) admits a weak non-exploding solution (Yt , t ≥ 0) ,
which is unique in law.

2) Let p(t, dx) be the law of Yt. Then, (p(t, dx) , t ≥ 0) is the unique
family in M such that:

t −→ p(t, dx) ∈M is continuous and p(0, dx) = µ(dx) ,

∂p

∂t
− 1

2

∂2

∂x2
(σ2 p) = 0 in the sense of distributions on U .

We now present our proof of Kellerer’s theorem for right-continuous pea-
coks.

Theorem 3.2 Let (µt , t ≥ 0) be a family in M. Then the following
properties are equivalent:

1) There exists a right-continuous martingale associated to (µt , t ≥ 0) .

2) (µt , t ≥ 0) is a peacock and the map:

t ≥ 0 −→ µt ∈M

is right-continuous.
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Proof We first assume that property 1) is satisfied. Then, the fact that
(µt , t ≥ 0) is a peacock follows classically from Jensen’s inequality. Let
(Mt , t ≥ 0) be a right-continuous martingale associated to (µt , t ≥

0). Then, if f is a bounded continuous function, we obtain by dominated
convergence that, for any t ≥ 0,

lim
s→t,s>t

∫
f(x) µs(dx) = lim

s→t,s>t
E[f(Ms)] = E[f(Mt)] =

∫
f(x) µt(dx) .

Therefore, the map:
t ≥ 0 −→ µt ∈M

is right-continuous, and property 2) is satisfied.
Conversely, we now assume that property 2) is satisfied. We set, as in

Subsection 2.2, C(t, x) = Cµt(x) . Let α be a density of probability on R,
of C∞ class , with compact support contained in [0, 1] . We set, for ε ∈ (0, 1)
and (t, x) ∈ R+ × R,

pε(t, x) =
1− ε
ε

∫
α(u)

[∫
α

(
y − x
ε

)
µt+εu(dy)

]
du+ ε g(t, x)

with

g(t, x) =
1√

2π (1 + t)
exp

(
− x2

2 (1 + t)

)
.

Lemma 3.1 The function pε is of C∞ class on R+ × R and pε(t, x) > 0
for any (t, x). Moreover,∫

pε(t, x) dx = 1 and

∫
|x| pε(t, x) dx <∞ .

The proof is straightforward.
We now set:

µεt(dx) = pε(t, x) dx .

By Lemma 3.1, µεt ∈Mf and we set:

Cε(t, x) = Cµε
t
(x) .

Lemma 3.2 For any t ≥ 0, the set {µεt ; 0 < ε < 1} is uniformly
integrable.
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Proof Let a =
∫
y α(y) dy . A simple computation yields:∫

{|x|≥c}
|x| µεt(dx) ≤

∫
α(u)

[∫
{|y|≥c−1}

(|y|+ a) µt+εu(dy)

]
du

+

∫
{|x|≥c}

|x| g(t, x) dx

and the result follows from the uniform integrability of {µv ; 0 ≤ v ≤ t+ 1}
(property (1) in Proposition 2.5).

2

Lemma 3.3 One has:

Cε(t, x) = (1− ε)
∫ ∫

α(u)α(y)C(t+ εu, x+ εy) dy du

+ε

∫ +∞

x

(y − x) g(t, y) dy .

The function Cε is of C∞ class on R+ × R. Moreover, for any (t, x) ∈
R+ × R,

∂Cε
∂t

(t, x) > 0 and
∂2Cε
∂x2

(t, x) = pε(t, x) .

Proof The above expression of Cε follows directly from the definitions. We
deduce therefrom that Cε is of C∞ class on R+ ×R. Now, by property 2. in
Proposition 2.4,

∂Cε
∂t

(t, x) ≥ ε
∂

∂t

[∫ +∞

x

(y − x) g(t, y) dy

]
=
ε

2
g(t, x) > 0 .

Finally, the equality:
∂2Cε
∂x2

(t, x) = pε(t, x)

holds, since, by Proposition 2.1, it holds in the sense of distributions, and
both sides are continuous.

2

Lemma 3.4 For 0 ≤ s ≤ t,

lim
|x|→∞

sup{Cε(t, x)− Cε(s, x) ; 0 < ε < 1} = 0 .
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Proof By Lemma 3.3,

sup{Cε(t, x)− Cε(s, x) ; 0 < ε < 1} ≤ A(x) +B(x)

with

A(x) = sup{C(w, y)− C(v, y) ; 0 ≤ v ≤ w ≤ t+ 1, x ≤ y ≤ x+ 1}

and

B(x) =
1

2

∫ t

s

g(u, x) du .

By property (2) in Proposition 2.5, lim|x|→∞A(x) = 0 , and, obviously,
lim|x|→∞B(x) = 0 .

2

Lemma 3.5 For t ≥ 0,

lim
ε→0

µεt = µt in M .

Proof By property i) in Proposition2.2, property (1) in Proposition 2.5 and
Proposition 2.3,

lim
s→t,s>t

C(s, x) = C(t, x) uniformly on compact sets.

Then, the expression of Cε in Lemma 3.3 yields:

lim
s→t,s>t

Cε(s, x) = Cε(t, x) .

It then suffices to apply again Proposition 2.3, taking into account Lemma
3.2.
Note that we might also have proven this lemma directly from the definition
of µεt .

2

Lemma 3.6 We set, for (t, x) ∈ R+ × R,

σε(t, x) =

(
2
∂Cε

∂t
(t, x)

pε(t, x)

)1/2

.
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Then, σε is continuous and strictly positive on R+×R. Moreover, for (t, x) ∈
R+ × R,

∂pε
∂t

(t, x) =
1

2

∂2

∂x2

(
σ2
ε(t, x) pε(t, x)

)
,

which is the Fokker-Planck equation for pε.

Proof This is a direct consequence of Lemma 3.1 and Lemma 3.3. In
particular, the Fokker-Planck equation can be written:

∂

∂t

∂2Cε
∂x2

=
∂2

∂x2

∂Cε
∂t

.

2

By Theorem 3.1, there exists a process (M ε
t , t ≥ 0) which is a weak

solution of the stochastic differential equation

Zt = Z0 +

∫ t

0

σε(s, Zs) dBs

with Z0 a random variable with law µε0, independent of the Brownian motion
(Bs, s ≥ 0), and this process (M ε

t , t ≥ 0) is associated to (µεt , t ≥ 0).

For every n ∈ N and τn = (t1, · · · , tn) ∈ Rn
+, we denote by µ

(ε,n)
τn the law of

(M ε
t1
, · · · ,M ε

tn), a probability on Rn.

Lemma 3.7 For every n ∈ N and τn ∈ Rn
+, the set of probability measures:

{µ(ε,n)
τn ; 0 < ε < 1} , is tight.

Proof Let n ∈ N and τn = (t1, · · · , tn) ∈ Rn
+. For x = (x1, · · · , xn) ∈ Rn, we

set |x| := sup1≤j≤n |xj| . Then, for c > 0,

µ(ε,n)
τn (|x| ≥ c) = P

(
sup

1≤j≤n
|M ε

tj
| ≥ c

)
≤ 1

c
E
[

sup
1≤j≤n

|M ε
tj
|
]

≤ 1

c

n∑
j=1

E
[
|M ε

tj
|
]
≤ 1

c

n∑
j=1

∫
|x| µεtj (dx) .

Now, by Lemma 3.2, for 1 ≤ j ≤ n,

sup
0<ε<1

∫
|x| µεtj (dx) <∞ .

Thus,
lim
c→+∞

sup
0<ε<1

µ(ε,n)
τn (|x| ≥ c) = 0 ,
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which yields the tightness of {µ(ε,n)
τn ; 0 < ε < 1} .

2

As a consequence of the previous lemma, and with the help of the diagonal
procedure, there exists a sequence (εp , p ≥ 0) tending to 0 such that,
for every n ∈ N and every τn ∈ Qn

+, the sequence of probabilities on Rn:

(µ
(εp,n)
τn , p ≥ 0) , weakly converges to a probability which we denote by

µnτn . We remark that, by Lemma 3.5, for any t ∈ Q+, µ1
t = µt . There

exists a process (Mt , t ∈ Q+) such that, for every n ∈ N and every
τn = (t1, · · · , tn) ∈ Qn

+, the law of (Mt1 , · · · ,Mtn) is µnτn .

Lemma 3.8 The process (Mt , t ∈ Q+) is a martingale.

Proof Let φ be a C2-function on R such that φ(x) = 1 for |x| ≤ 1,
φ(x) = 0 for |x| ≥ 2, and 0 ≤ φ(x) ≤ 1 for all x ∈ R. We set, for k > 0,
φk(x) = xφ(k−1 x) . Fix now n ∈ N and n continuous bounded functions
(g1, · · · , gn) on R, and finally 0 ≤ s1 ≤ · · · ≤ sn ≤ s ≤ t elements of Q+.

We set:

Θ(p, k) = E[g1(M
εp
s1

)g2(M
εp
s2

) · · · gn(M εp
sn

)φk(M
εp

t )]

−E[g1(M
εp
s1

)g2(M
εp
s2

) · · · gn(M εp
sn

)φk(M
εp
s )] .

From the definitions, we obtain:

lim
p→∞

Θ(p, k) = E[g1(Ms1)g2(Ms2) · · · gn(Msn)φk(Mt)]

−E[g1(Ms1)g2(Ms2) · · · gn(Msn)φk(Ms)]

and, by dominated convergence,

lim
k→∞

lim
p→∞

Θ(p, k) = E[g1(Ms1)g2(Ms2) · · · gn(Msn)Mt]

−E[g1(Ms1)g2(Ms2) · · · gn(Msn)Ms] .

On the other hand, by Itô’s formula, we have:

|Θ(p, k)| ≤ m

∫ ∫ t

s

|φ′′k(x)|
∂Cεp

∂u
(u, x) du dx

with

m =
n∏
j=1

sup
x∈R
|gj(x)| .

Besides, ∫
|φ′′k(x)| dx =

∫
|xφ′′(x) + 2φ′(x)| dx
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and φ′′k(x) = 0 for |x| 6∈ [k, 2k]. Therefore, there exists a constant m̃ such
that:

|Θ(p, k)| ≤ m̃ sup{Cεp(t, y)− Cεp(s, y) ; k ≤ |y| ≤ 2k} .(1)

Thus, by Lemma 3.4,

lim
k→∞

Θ(p, k) = 0 uniformly with respect to p.

Consequently,

0 = lim
p→∞

lim
k→∞

Θ(p, k) = lim
k→∞

lim
p→∞

Θ(p, k)

= E[g1(Ms1)g2(Ms2) · · · gn(Msn)Mt]−E[g1(Ms1)g2(Ms2) · · · gn(Msn)Ms] ,

which yields the desired result.
2

By the classical theory of martingales (see, for example, [DM]), almost surely,
for every t ≥ 0,

M̃t = lim
s→t,s∈Q,s>t

Ms

is well defined, and (M̃t , t ≥ 0) is a right-continuous martingale which,
obviously, is associated to (µt , t ≥ 0).

2

Remark By considering only the parameter k, the proof of Lemma 3.8 also
shows that, for every ε ∈ (0, 1), the process (M ε

t , t ≥ 0) is a (continuous)
martingale.

In the following lemma, which will be useful in the next section, we state
a property which is satisfied by the martingale (M̃t , t ≥ 0) constructed in
the proof of Theorem 3.2.

Lemma 3.9 Let g1, · · · , gn, φk and m̃ be as in the proof of Lemma 3.8.
Then, for 0 ≤ s1 ≤ · · · ≤ sn ≤ s ≤ t elements of R+,∣∣∣E[g1(M̃s1) · · · gn(M̃sn)φk(M̃t)]− E[g1(M̃s1) · · · gn(M̃sn)φk(M̃s)]

∣∣∣
≤ m̃ sup{C(t, y)− C(s, y) ; k ≤ |y| ≤ 2k} .
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Proof We first suppose that 0 ≤ s1 ≤ · · · ≤ sn ≤ s ≤ t are elements of
Q+, and we keep the notation in the proof of Lemma 3.8. By Lemma 3.5,
Lemma 3.2 and Proposition 2.3, for any t ≥ 0,

lim
p→∞

Cεp(t, x) = C(t, x) uniformly on compact sets.

Therefore, letting p tend to ∞ in inequality (1), we get :

|E[g1(Ms1) · · · gn(Msn)φk(Mt)]− E[g1(Ms1) · · · gn(Msn)φk(Ms)]|

≤ m̃ sup{C(t, y)− C(s, y) ; k ≤ |y| ≤ 2k} .

Suppose now that 0 ≤ s1 ≤ · · · ≤ sn ≤ s ≤ t are elements of R+. Using
again Proposition 2.3 (and property (1) in Proposition 2.5), we obtain the
desired result by approximation, from the above inequality.

2

4 Kellerer’s theorem: the general case

We now obtain, by approximation, a proof of Kellerer’s theorem in the general
case.

Theorem 4.1 Let (µt , t ≥ 0) be a family in M. Then the following
properties are equivalent:

1) There exists a martingale associated to (µt , t ≥ 0) .

2) (µt , t ≥ 0) is a peacock.

Proof We consider a peacock (µt , t ≥ 0) and we set C(t, x) = Cµt(x) .

Lemma 4.1 There exists a countable set D ⊂ R+ such that the map:

t −→ µt ∈M

is continuous at any s 6∈ D.

Proof By property 2. in Proposition 2.4, there exists a countable set D ⊂
R+ such that, for every x ∈ Q, the map:

t −→ C(t, x)
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is continuous at any s 6∈ D. By equicontinuity (property i) in Proposition
2.2), this continuity property holds for every x ∈ R. It suffices then to apply
Proposition 2.3, taking into account property (1) in Proposition 2.5.

2

We may write D = {dn ; n ∈ N} . For p ∈ N, we denote by (k
(p)
n , n ≥ 0)

the increasing rearrangement of the set:

{k 2−p ; k ∈ N} ∪ {dj ; 0 ≤ j ≤ p} .

We define (µ
(p)
t , t ≥ 0) by:

µ
(p)
t = µ

k
(p)
n

if there exists n such that t = k
(p)
n ,

and by: µ
(p)
t =

k
(p)
n+1 − t

k
(p)
n+1 − k

(p)
n

µ
k
(p)
n

+
t− k(p)

n

k
(p)
n+1 − k

(p)
n

µ
k
(p)
n+1

if t ∈ [k
(p)
n , k

(p)
n+1].

We also set: Cp(t, x) = C
µ

(p)
t

(x) .

Lemma 4.2 The following properties hold:

i) (µ
(p)
t , t ≥ 0) is a peacock and the map: t −→ µ

(p)
t ∈M is continuous.

ii) For any t ≥ 0, the set {µ(p)
t ; p ∈ N} is uniformly integrable.

iii) For t ≥ 0, limp→∞ µ
(p)
t = µt in M .

iv) For 0 ≤ s ≤ t,

lim
|x|→∞

sup{Cp(t, x)− Cp(s, x) ; p ≥ 0} = 0 .

Proof Properties i) and iii) are clear by construction. Property ii) (resp.
property iv)) follows directly from property (1) (resp. property (2)) in Propo-
sition 2.5.

2

By Theorem 3.2, there exists, for each p, a right-continuous martingale
(M

(p)
t , t ≥ 0) which is associated to (µ

(p)
t , t ≥ 0) and satisfies the

property stated in Lemma 3.9. For any n ∈ N and τn = (t1, · · · , tn) ∈ Rn
+,

we denote by µ
(p,n)
τn the law of (M

(p)
t1 , · · · ,M

(p)
tn ), a probability measure on

Rn. The proof of the following lemma is quite similar to that of Lemma 3.7,
hence we omit this proof.
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Lemma 4.3 For every n ∈ N and τn ∈ Rn
+, the set of probability measures

{µ(p,n)
τn ; p ≥ 0} , is tight.

Let now U be an ultrafilter on N, which refines Fréchet’s filter. As a
consequence of the previous lemma, for every n ∈ N and every τn ∈ Rn

+,

lim
U
µ(p,n)
τn exists in M and we denote this limit by µ

(∞,n)
τn . By property iii)

in Lemma 4.2, µ
(∞,1)
t = µt . There exists a process (Mt , t ≥ 0) such that,

for every n ∈ N and every τn = (t1, · · · , tn) ∈ Rn
+, the law of (Mt1 , · · · ,Mtn) is

µ
(∞,n)
τn . In particular, this process (Mt , t ≥ 0) is associated to (µt , t ≥ 0) .

Lemma 4.4 The process (Mt , t ≥ 0) is a martingale.

Proof The proof is similar to that of Lemma 3.8, but we give the details
for the sake of completeness.

Let φ be a C2-function on R such that φ(x) = 1 for |x| ≤ 1, φ(x) = 0
for |x| ≥ 2, and 0 ≤ φ(x) ≤ 1 for all x ∈ R. We set, for k > 0, φk(x) =
xφ(k−1 x) . Fix now n ∈ N and n continuous bounded functions (g1, · · · , gn)
on R, and finally 0 ≤ s1 ≤ · · · ≤ sn ≤ s ≤ t elements of R+. We set:

Λ(p, k) = E[g1(M
(p)
s1

)g2(M
(p)
s2

) · · · gn(M (p)
sn

)φk(M
(p)
t )]

−E[g1(M
(p)
s1

)g2(M
(p)
s2

) · · · gn(M (p)
sn

)φk(M
(p)
s )] .

From the definitions, we obtain, for every k,

lim
U

Λ(p, k) = E[g1(Ms1)g2(Ms2) · · · gn(Msn)φk(Mt)]

−E[g1(Ms1)g2(Ms2) · · · gn(Msn)φk(Ms)]

and, by dominated convergence,

lim
k→∞

lim
U

Λ(p, k) = E[g1(Ms1)g2(Ms2) · · · gn(Msn)Mt]

−E[g1(Ms1)g2(Ms2) · · · gn(Msn)Ms] .

On the other hand, since (M
(p)
t , t ≥ 0) satisfies the property stated in

Lemma 3.9, there exists a constant m̃ such that:

|Λ(p, k)| ≤ m̃ sup{Cp(t, y)− Cp(s, y) ; k ≤ |y| ≤ 2k} .

Thus, by property iv) in Lemma 4.2,

lim
k→∞

Λ(p, k) = 0 uniformly with respect to p.
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Consequently,

0 = lim
U

lim
k→∞

Λ(p, k) = lim
k→∞

lim
U

Λ(p, k)

= E[g1(Ms1)g2(Ms2) · · · gn(Msn)Mt]−E[g1(Ms1)g2(Ms2) · · · gn(Msn)Ms] ,

which yields the desired result.
2

This lemma completes the proof of Theorem4.1. 2
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