A new proof of Kellerer’s theorem

Francis HIRSCHY, Bernard ROYNETTE®
June 15, 2011

() Laboratoire d/’Analyse et Probabilités,
Université d’Evry - Val d’Essonne, Boulevard F. Mitterrand,
F-91025 Evry Cedex

e-mail: francis.hirsch@univ-evry.fr

() Institut Elie Cartan,
Université Henri Poincaré, B.P. 239,
F-54506 Vandoeuvre-les-Nancy Cedex

e-mail: bernard.roynette@iecn.u-nancy.fr

Abstract: In this paper, we present a new proof of the celebrated theorem of H. Kellerer,
stating that every integrable process, which increases in the convex order, has the same
one-dimensional marginals as a martingale. Our proof proceeds by approximations, and
calls upon martingales constructed as solutions of stochastic differential equations. It relies
on a uniqueness result, due to M. Pierre, for a Fokker-Planck equation.

Key words: convex order; 1-martingale; peacock; Fokker-Planck equation.

2000 MSC: Primary 60E15, 60G44; Secondary 60G48, 60H10, 35K15.

1 Introduction

1.1

First we fix the terminology.

We say that two R-valued processes are associated, if they have the same
one-dimensional marginals. A process which is associated with a martingale
is called a 1-martingale.

An R-valued process (X;, t > 0) is called a peacock (see [HPRY] for
the origin of this term and many examples) if:



i) it is integrable, that is:

vt >0, E[X]< o0

ii) it increases in the convex order, meaning that, for every convex function
¥ : R — R, the map:

t >0 — E[p(Xy)] € (o0, +09]
is increasing.

Actually, it may be noted that, in the definition of a peacock, only the family
(g , t > 0) of its one-dimensional marginals is involved. In the following,
we shall also call a peacock, a family (u; , ¢ > 0) of probability measures on
R such that:

i) Vt>0, /\x| p(de) < oo,

ii) for every convex function ¢ : R — R, the map:

(>0 / (x) pu(dz) € (00, +00]

is increasing.

Likewise, a family (y; , t > 0) of probability measures on R and an R-valued
process (Y; , t > 0) will be said to be associated if, for every t > 0, the law
of Yy is py, ie. if (py , t > 0) is the family of the one-dimensional marginals
of (Y;, t>0).

1.2

It is an easy consequence of Jensen’s inequality that an R-valued process

(X¢, t > 0) which is a 1-martingale, is a peacock. A remarkable result
due to H. Kellerer ([K], 1972) states that, conversely, any R-valued pro-
cess (X;, t > 0) which is a peacock, is a l-martingale. More precisely,
Kellerer’s result states that any peacock admits an associated martingale
which is Markovian.

Recently, G. Lowther ([L], 2008) stated that if (u; , ¢ > 0) is a peacock
such that the map: t — p,; is weakly continuous (i.e. for any R-valued,
bounded and continuous function f on R, the map: ¢ — [ f(z) pu(dx)
is continuous), then (y; , t > 0) is associated with a strongly Markovian
martingale which moreover is “almost-continuous” (see [L] for the definition).
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1.3

In this paper, our aim is to present a new proof of the above mentioned the-
orem of H. Kellerer, which eventually identifies peacocks and 1-martingales.
Our method is inspired from the “Fokker-Planck Equation Method” ([HPRY,
Section 6.2]) and appears then as a new application of M. Pierre’s uniqueness
theorem for a Fokker-Planck equation ([HPRY, Theorem 6.1]).

1.4

The remainder of this paper is organised as follows:

e In Section 2, we define as usual the call function C, of the law u of
an integrable random variable X, by:

ViER, C(z)— / (y — 2)* u(dy) = E[(X — )]

and we present some properties of the correspondence: p — C), ,
which are useful in the study of peacocks.

e In Section 3, we prove that a family (u; , ¢ > 0) of probability
measures on R, is associated to a right-continuous martingale, if and
only if, (u; , t > 0) is a peacock such that the map: t — py is
weakly right-continuous on R, .

e In Section 4, by approximation from the previous result, we deduce
Kellerer’s theorem in the general case.

2 Call functions and peacocks

In this section, we fix the notation and the terminology, and we gather some
preliminary results.

2.1 Call functions

In the sequel, we denote by M the set of probability measures on R,
equipped with the topology of weak convergence (with respect to the space
of R-valued, bounded, continuous functions on R).

We denote by M the subset of M consisting of measures © € M such
that [ |z| p(dz) < co. My is also equipped with the topology of weak
convergence.



We define, for u € My, the call function C,, by:

VreR Cula) = [(w-o)" uldy).

Proposition 2.1 If up € My, then C,, satisfies the following properties:
a) O, is a convex, nonnegative function on R.

b)  limyy0o Cux) = 0.

¢) There exists a € R such that lim,_,_(C,(z)+ x) = a.

Conversely, if a function C' satisfies the above three properties, then there
exists a unique p € My such that C = C,. This measure p is the second
deriwative, in the sense of distributions, of the function C.

Proof Clearly, if 1 € My, then C, satisfies properties a), b) and ¢). For
example, ¢) follows directly from:

VeeR, C,(z)+x= /Sup(y,x) w(dy)

which tends to a = f y u(dy) as x — —oo. Moreover, it is easy to see that
the measure pu is the second derivative, in the sense of distributions, of the
function C,,.

Conversely, let C' be a function satisfying properties a), b) and c). We
define p as the second derivative, in the sense of distributions, of the function
C'. Then p is a positive measure. Denote by C’(x) the right derivative, at
x, of the convex function C. By properties a) and b),

VeeR, C'(x) <0 and lim C'(z)=0.

T—-+00

Therefore, for x € R,

O'(a) = — / Loty (®) 1(dy)

By property ¢), lim,, o, C'(z) = —1 and then p € M.
Besides,

cwy=- [ W= [ wa

and

O(x) +2 = / sup(y, ) (dy) .
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Using again property c), we see that 4 € My and C = C,,.

Proposition 2.2 Let p € My and set E[u) = [z p(dz). Then C, satisfies
the following additional properties:

i)  Vr<uy, 0<Cux)—Culy) <y—=z.

i) Vo, Gua)+o— Bl = [(0-)" uldy).

iii) lim (C,(z) 4+ x) = E[u] .

r——00

Proof The proposition follows from the following equalities, already seen in
the previous proof:

cmmz—/uwmwmww,

Culz) +x = /sup(y,w) p(dy) -
O

To state the next proposition, we now recall that a subset H of M is said
to be uniformly integrable if

lim sup/ |z| u(dz) =0.
{lz|=c}

c——+00 neH

We remark that, if H is uniformly integrable, then

HC M; and sup{/|m|,u(dx);u€7'l}<oo.

Proposition 2.3 Let [ be a set and let £ be a filter on I. Consider a
uniformly integrable family (p; , i € I) in M, and p € M. The following
properties are equivalent:

1) lign Wi = b with respect to the topology on M .



2)  pweM; and
Vz € R, lign C.(z) =Cyu(z) .
3)  pe My and, for every R-valued continuous function f on R such that
da > 0,b >0, VreR, |f(x)] <a+blz|,
one has:
lim [ () (o) = [ (o) p(de).

Proof We first assume that property 1) holds. Then

/\:U| p(dr) < sup{/ |z| pi(de) ;i e I} < oo,
and pn € My. Let f be an R-valued continuous function on R such that
Ja > 0,0 >0, VxeR, lf(x)] <a+b|z|.

We set, for n € N, f,(z) = sup|inf(f,n), —n]. Since f, is continuous and
bounded,

lim [ fula) pi(de) = [ £,(0) (o).
On the other hand, for n > a,
f(@) = fal@)l = (1f (@) =n)" < (lz[+a—n)" <b|2[1,zn0y,

and hence

[ £ (o) = [ fula) it

sup
el

< b sup / 2] pi(da) -
{|z|>

y n—a
el 5

By uniform integrability, we then obtain:

lim sup =0.

n—o0 el

[ 1@ ) = [ £ i)

Finally,

/ fl) pdz) = tim T [ (o) pld)



and property 3) is satisfied.
Obviously, property 3) entails property 2).
Suppose then that property 2) holds. By equicontinuity (property i) in
Proposition 2.2),
lim G () = (o)

uniformly on compact sets of R, and hence in the sense of distributions.
Consequently, since p; (resp. pu) is the second derivative, in the sense of
distributions, of the function C,,, (resp. C,,),

lim p1; =
imp = p

in the sense of distributions. As yu; and p are probability measures, this en-
tails property 1). O

2.2 Peacocks

In this subsection, we fix a family (¢ , t > 0) in My and we define a
function C(t,z) on Ry x R by:

C(t,z) =C,,(x) .

We recall (see Subsection 1.1) that the family (u; , ¢ > 0) is called a
peacock, if

D oove> o0, /m () < o0
ii) for every convex function ¢ : R — R, the map:

t>0— /w(:v) p(de) € (—oo, +00]

is increasing.

The following characterization is easy to prove and is stated in [HPRY, Ex-
ercise 1.7].

Proposition 2.4 The family (p; , t > 0) is a peacock if and only if:
1. the expectation E[u] does not depend on t,

2. for every x € R, the function t >0 — C(t,z) is increasing.
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The following proposition plays an important role in the sequel.

Proposition 2.5 Assume that (u; , t > 0) is a peacock, and let T > 0.
Then,

(1) the set {u;; 0 <t <T} isuniformly integrable,
(2) ‘lim sup{C(t,z) = C(s,2); 0<s<t<T}=0.

z|

Proof Property (1) is stated in [HPRY, Exercise 1.1]. Actually, it suffices
to remark that, if ¢ > 0,

2| Loz < (22 — ).

As the function © — (2]z| — ¢)™ is convex,

su x| p(de) < 2lz| — )" pup(de
plﬂm|nu ) /<|| V¥ pr(de)

te[0,T]

Now, by dominated convergence,

lim [ (2]|z| —¢)" pr(dz)=0.

c——+400

We have:
sup{C(t,x) = C(s,z); 0< s <t <T} < C(T,z) .
Hence, by property b) in Proposition 2.1,
xgrfoosup{C(t,x) —C(s,2); 0<s<t<T}=0.
On the other hand, since E[yu;] does not depend on ¢,
C(t,x) = Cls,x) = [C(t,2) + & = B[] — [C(s,2) + 2 — Elp]]
Now, by property ii) in Proposition 2.2,

Clt,a) + 2~ El) = [ (@~ )" pulc)
is therefore nonnegative and increases with respect to t. Hence
sup{C(t,z) = C(s,2); 0< s <t <T} < C(T,z) +z — E[ur]
and, by property iii) in Proposition 2.2,
xgglwsup{C(t,x) —C(s,2); 0<s<t<T}=0.



3 Right-continuous peacoks

In this section, we shall prove Kellerer’s theorem for right-continuous pea-
coks. We proceed by regularization, using, for regularized peacocks, the
Fokker-Planck equation method as in [HPRY, Chapter 6]. This method re-
lies heavily on M. Pierre’s uniqueness theorem for a Fokker-Planck equation
([HPRY, Theorem 6.1]).

We first recall the main result in the Fokker-Planck equation method,
namely Theorem 6.2 in [HPRY]. The next statement is a slightly extended
version of this theorem.

Theorem 3.1 (see Theorem 6.2 in [HPRY]) Let U = (0,+o0) x R
and U the closure of U (U=R; xR). Let o be a continuous function
on U such that o(t,z) > 0 for every (t,z) € U. Let pe€ M;.

1) The stochastic differential equation
t
Zy = 7 +/ o(s,Zs) dB;
0

(where Zy is a random variable with law p, independent of the Brownian
motion (Bs,s > 0)) admits a weak non-exploding solution (Y;, t > 0) ,
which is unique in law.

2) Let p(t,dx) be the law of Y. Then, (p(t,dz) , t > 0) is the unique
family in M such that:

t — p(t,dz) € M is continuous and  p(0,dx) = p(dx) ,
— ————(0?p) =0 in the sense of distributions on U .
x

We now present our proof of Kellerer’s theorem for right-continuous pea-
coks.

Theorem 3.2 Let (uy , t > 0) be a family in M. Then the following
properties are equivalent:

1) There exists a right-continuous martingale associated to (p , t > 0) .
2) (e, t>0) is a peacock and the map:
t Z 0— ot € M

15 Tight-continuous.



Proof We first assume that property 1) is satisfied. Then, the fact that
(e , t > 0) is a peacock follows classically from Jensen’s inequality. Let
(M; , t > 0) be a right-continuous martingale associated to (p; , t >

0). Then, if f is a bounded continuous function, we obtain by dominated

convergence that, for any ¢ > 0,

Jim [ £ pldn) = tim BFOL)] = B 0)] = [ fa) pude).
Therefore, the map:
t Z 0— Lt € M

is right-continuous, and property 2) is satisfied.

Conversely, we now assume that property 2) is satisfied. We set, as in
Subsection 2.2, C(t,x) = C,,(z). Let a be a density of probability on R,
of C* class , with compact support contained in [0, 1] . We set, for ¢ € (0,1)
and (t,z) € Ry xR,

pite) == [at | o (Y20 psatan)] dut gt

3

with
1

900 = iy ™ (‘M) |

Lemma 3.1 The function p. is of C* class on Ry X R and p.(t,z) > 0
for any (t,x). Moreover,

/pa(t,x) dr =1 and / |z| pe(t, z) dz < oo .

The proof is straightforward.
We now set:

pi (dz) = pe(t, z) da .
By Lemma 3.1, yu; € My and we set:

Cu(t, o) = Ce(x) .

Lemma 3.2 For any t > 0, the set {pi ; 0 < ¢ < 1} s uniformly
integrable.
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Proof Let a= [ya(y)dy. A simple computation yields:

/{|x>c} |z| pg(dx) < /a(U) [/{|y>6_1}(|y| + @) fiprea(dy) | du

—I—/ |z| g(t, z) dz
{lz|>c}

and the result follows from the uniform integrability of {u, ; 0 < v <t+1}
(property (1) in Proposition 2.5).
(Il

Lemma 3.3 One has:

C.(t,z) = (1—5)//a(u)oc(y)0(t+6u,x+£y) dy du

+e /+Oo(y —x)g(t,y) dy .

The function C. s of C* class on Ry x R. Moreover, for any (t,x) €
R, xR,
oC, 02C,

(¢ 0 d —=
(t,x) > an 92

5 (t,2) = pelt2)

Proof The above expression of C. follows directly from the definitions. We
deduce therefrom that C. is of C'° class on R, x R. Now, by property 2. in
Proposition 2.4,

oC. o [ [T c
> B — — = — .
By (t,z) > ¢ 5 M (y—x)g(t,y) dy 5 g(t,z) >0

Finally, the equality:
0*C
ax; (t,z) = pe(t, )
holds, since, by Proposition 2.1, it holds in the sense of distributions, and
both sides are continuous.

O

Lemma 3.4 For (0 < s <t,

lim sup{C.(t,z) — C:(s,z); 0<e <1} =0.

|z]—o0
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Proof By Lemma 3.3,
sup{C.(t,z) — C.(s,z) ; 0 <e <1} < A(x) + B(z)
with
A(z) =sup{C(w,y) —C(v,y); 0<v<w<t+1lz<y<z+1}
and

B(z) = é / g(u,z) du .

By property (2) in Proposition 2.5, limjy—. A(z) = 0 , and, obviously,
1iIIl|QE|_>oo B(:c) =0.
(I

Lemma 3.5 Fort >0,

limu; =p  in M.
e—0

Proof By property i) in Proposition2.2, property (1) in Proposition 2.5 and
Proposition 2.3,

litm tC(s, x) =C(t,x) uniformly on compact sets.
s—t,8>

Then, the expression of C. in Lemma 3.3 yields:

lim C.(s,z) = C.(t,x) .

s—t,5>1

It then suffices to apply again Proposition 2.3, taking into account Lemma
3.2.
Note that we might also have proven this lemma directly from the definition
of 5.

O

Lemma 3.6 We set, for (t,x) € Ry x R,

o.(t,r) = (2 w) " :

pe(t, x)
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Then, o. is continuous and strictly positive on R xR. Moreover, for (t,x) €
R, xR,

Op- 1 02

E(t, [L‘) = § @ (O’g(t, .I') pa(t, l')) s
which is the Fokker-Planck equation for p..

Proof This is a direct consequence of Lemma 3.1 and Lemma 3.3. In
particular, the Fokker-Planck equation can be written:

9 o°C. & 0C.
ot Ox? ~ 0a® Ot

O

By Theorem 3.1, there exists a process (M7 , ¢ > 0) which is a weak
solution of the stochastic differential equation

t
z:%+/%@4m&
0

with Z;, a random variable with law 1, independent of the Brownian motion
(Bs,s > 0), and this process (M7 , t > 0) is associated to (u§ , t > 0).
For every n € N and 7, = (t1,--,t,) € R, we denote by 5™ the law of
(Mg ,---,M; ), a probability on R".

Lemma 3.7 For every n € N and 7, € RY}, the set of probability measures:
{u(Ti’n) ; 0<e< 1}, is tight.

Proof Letn € Nand 7, = (t1,---,t,) € R}. For x = (2q,---,2,) € R", we
set |r| = sup,<;<, |z;| . Then, for ¢ >0,

1
Mgin)qx’ >c) = P ( sup |M;| > C) <-E { sup |Mf|]
j C J

1<j<n 1<j<n
1 o . 1 o .
< 2>l <o) [l u ).
j=1 j=1

Now, by Lemma 3.2, for 1 < j < n,
sup /|J:| pz, (dz) < oo
0<e<1

Thus,

lim sup p{&™(|jz| > ¢) =0,
c—+0 gcecl
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which yields the tightness of {u{&™:0<e<1}.
O

As a consequence of the previous lemma, and with the help of the diagonal
procedure, there exists a sequence (g, , p > 0) tending to 0 such that,

for every n € N and every 7, € Q, the sequence of probabilities on R™:

(u&ip’n) , p > 0) , weakly converges to a probability which we denote by

p2 . We remark that, by Lemma 3.5, for any ¢t € Q4, p; = g . There
exists a process (M; , t € Q) such that, for every n € N and every
Tn = (t1, -+, tn) € QY the law of (My,,---, My,) is pl} .

Lemma 3.8 The process (M;, t € Q,) is a martingale.

Proof Let ¢ be a C*function on R such that ¢(z) = 1 for |z| < 1,
¢(x) =0 for |[z] > 2,and 0 < ¢(z) <1 for all z € R. We set, for £ > 0,
ox(x) = 2 (k™' z) . Fix now n € N and n continuous bounded functions
(g1,--+,9,) on R, and finally 0 <s; <---<s, <s <t elements of Q..
We set:

O(p.k) = Elgi(M7)ga(M2) - gn(M:?) dr(M;")]
—Elg1(M7)ga (M) - - - gn (M) o1 (MZ7)] -
From the definitions, we obtain:
Jim O(p. k) = Elgi(M,,)g2(Ms,) - - - gu(Ms,,) dr(M,)]
—E[g1(Ms,)g2(Ms,) - - gn (M, ) dr(M))]
and, by dominated convergence,
Jim Tim O, k) = Elgi(Ms,)g2(Ms,) -+ gn(Ms,) My
—Elg1(Ms,)g2(Ms,) - - - gn(Ms, ) M| -

On the other hand, by Ito’s formula, we have:

! " 80513
Okl <m [ [ 161()] % (w,0) du
with

m = Hsup lg;(z)] .

j=1 zeR

Besides,

/ 6(a)] dz = / 2 ¢"(z) + 20/(2)| da
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and ¢} (z) = 0 for |z| & [k,2k]. Therefore, there exists a constant m such
that:
(1) O(p, k)| < m sup{C;, (t,y) — Cc,(s,4) 5 k < |y| < 2k} .

Thus, by Lemma 3.4,

lim ©(p, k) =0 uniformly with respect to p.

k—oo

Consequently,

0= lim lim ©(p, k) = lim lim O(p, k)

p—00 k—o00 k—o0 p—0o0

= E[g1(My,)g2(Ms,) - gn(Ms,, ) Me]=E[g1 (Ms,)g2(Ms,) - - - gn(Ms, ) My]

which yields the desired result.
(I

By the classical theory of martingales (see, for example, [DM]), almost surely,
for every t > 0, .
M,= lim M,
s—t,s€Q,s>t
is well defined, and (]\A/[/t , t > 0) is a right-continuous martingale which,
obviously, is associated to (y; , t > 0).
(I

Remark By considering only the parameter k, the proof of Lemma 3.8 also
shows that, for every € € (0,1), the process (M7, t > 0) is a (continuous)
martingale.

In the following lemma, which will be useful in the next section, we state
a property which is satisfied by the martingale (M, , ¢ > 0) constructed in
the proof of Theorem 3.2.

Lemma 3.9 Let ¢y, -+, 9n,¢x and m be as in the proof of Lemma 3.8.
Then, for 0 <s; <---<s,<s<t elements of Ry,

Elgi(Ms,) - ga(Ms,) ox(M,)] — Elgi (Ms,) - - ga(Ms,,) ¢1(M,)]

<msup{C(t,y) — C(s,y); k < |y| < 2k}.
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Proof We first suppose that 0 < s; < --- <, < s <t are elements of
Q,, and we keep the notation in the proof of Lemma 3.8. By Lemma 3.5,
Lemma 3.2 and Proposition 2.3, for any ¢ > 0,

lim C, (t,7) = C(t,z) uniformly on compact sets.

p—00

Therefore, letting p tend to co in inequality (1), we get :

[Elgr (M) - - gn(Ms,) ¢ (My)] — Elg1(My,) - - gn(Ms,) ¢x(Mo)]|

< sup{C(t,y) — Cls,y) ; k <[y <2k} .

Suppose now that 0 < s < --- <5, < s <t are elements of R;. Using
again Proposition 2.3 (and property (1) in Proposition 2.5), we obtain the
desired result by approximation, from the above inequality.

(I

4 Kellerer’s theorem: the general case

We now obtain, by approximation, a proof of Kellerer’s theorem in the general
case.

Theorem 4.1 Let (y; , t > 0) be a family in M. Then the following
properties are equivalent:

1) There exists a martingale associated to (p; , t > 0) .

2) (ut, t >0) is a peacock.

Proof We consider a peacock (p; , t > 0) and we set C(t,z) =C,, () .

Lemma 4.1 There exists a countable set D C Ry such that the map:
t— €M

is continuous at any s ¢ D.

Proof By property 2. in Proposition 2.4, there exists a countable set D C
R, such that, for every z € QQ, the map:

t — C(t,x)

16



is continuous at any s ¢ D. By equicontinuity (property i) in Proposition
2.2), this continuity property holds for every = € R. It suffices then to apply
Proposition 2.3, taking into account property (1) in Proposition 2.5.

O

We may write D = {d,, ; n € N} . For p € N, we denote by (kq(@p) , n>0)
the increasing rearrangement of the set:

{k277; ke N}uU{d;; 0<j<p}.
We define (u?, ¢ >0) by:

Mgp) = p,m  if there exists n such that ¢ = kP ),

(») k({zl —t t— k(p) ® 1.(p)
d by: = w) Ma L, p if t € lkn ',k .
A DY =l g et e, ST

We also set: C,(t,x) = C’M(m(a:) .

Lemma 4.2 The following properties hold:

i) (uﬁp) , t >0) is a peacock and the map: t — u%p) € M is continuous.

ii) For anyt >0, the set {u?) ; p € N} is uniformly integrable.
iii) Fort >0, limy_oop” =, in M.
iv) For0<s<t,

lim sup{C,(t,z) — Cy(s,xz); p>0} =0.

|z|—o0

Proof Properties i) and iii) are clear by construction. Property ii) (resp.
property iv)) follows directly from property (1) (resp. property (2)) in Propo-
sition 2.5.

([

By Theorem 3.2, there exists, for each p, a right-continuous martingale

(Mt(p) , t > 0) which is associated to (pﬁp) , t > 0) and satisfies the
property stated in Lemma 3.9. For any n € N and 7,, = (t1,---,t,) € RY,
we denote by "™ the law of (Mt(f’ ). ,Mt(f )), a probability measure on
R"™. The proof of the following lemma is quite similar to that of Lemma 3.7,
hence we omit this proof.
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Lemma 4.3 For every n € N and 7, € R}, the set of probability measures
{u2™ ; p >0}, is tight.

Let now U be an ultrafilter on N, which refines Fréchet’s filter. As a

consequence of the previous lemma, for every n € N and every 7, € R,

n)

lizgn u(TJZ’”) exists in M and we denote this limit by u(Tio . By property iii)

in Lemma 4.2, 7\ = i, . There exists a process (M, , t > 0) such that,
for every n € N and every 7, = (t1,---,t,) € R, the law of (M, -+, M,,) is

(co,n

42°™  In particular, this process (M, , t >0) is associated to (u;, t >0) .
Lemma 4.4 The process (M;, t>0) is a martingale.

Proof The proof is similar to that of Lemma 3.8, but we give the details
for the sake of completeness.

Let ¢ be a C%function on R such that ¢(z) =1 for |z| <1, ¢(x) =0
for |z] > 2, and 0 < ¢(z) <1 for all x € R. We set, for k > 0, ¢x(z) =
r¢(k~'x) . Fixnow n € N and n continuous bounded functions (gi,- -, gn)
on R, and finally 0 <s; <--- <35, <s<t elements of R,. We set:

Alp,k) = Elgi(MP)go(MP)) - g (MP)) (M)
—E[gi (MP)gs(MP)) - - - g, (MP) ¢, (MP)] .

s

From the definitions, we obtain, for every k,

hg{IlA(p, k) = ]E[gl(M51)92(Msz) T gn(Msn) ¢k(Mt>]
_E[91<M81>g2(M32) o 'gn(Msn) ¢k(Ms)]

and, by dominated convergence,

’}Lrgo liLr{nA(p, k) = E[gl(Msl)g2(Msz) o 'gn<Msn) Mt]
_E[gl(Ms1)92(M52) T gn(Msn) Ms] :

On the other hand, since (Mt(p ) , t > 0) satisfies the property stated in
Lemma 3.9, there exists a constant m such that:

[A(p, k)| < m sup{Cy(t,y) — Cp(s,y) ; k < |y| <2k} .
Thus, by property iv) in Lemma 4.2,

lim A(p,k) =0 uniformly with respect to p.

k—o0
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Consequently,

0= lizfln lim A(p, k) = lim lim A(p, k)

k—o0 k—oo U

= Elg1(My,)92(Ms,) - - - gn(Ms, ) Mi] = Elg1 (My, ) g2 (M) - - - gn(Ms, ) Mi]

which yields the desired result.

This lemma completes the proof of Theorem4.1. O
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