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Abstract

We consider a one dimensional ballistic random walk evolving in an i.i.d.
parametric random environment. We provide a maximum likelihood estima-
tion procedure of the parameters based on a single observation of the path till
the time it reaches a distant site, and prove that the estimator is consistent
as the distant site tends to infinity. Our main tool consists in using the link
between random walks and branching processes in random environments and
explicitly characterising the limiting distribution of the process that arises.
We also explore the numerical performance of our estimation procedure.
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1. Introduction

Random walks in random environments (RWRE) have attracted much at-
tention lately, mostly in the physics and probability theory literature. These
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processes were introduced originally by Chernov (1967) to model the repli-
cation of a DNA sequence. The idea underlying Chernov’s model is that the
protein that moves along the DNA strand during replication performs a ran-
dom walk whose transition probabilities depend on the sequence letters, thus
modeled as a random environment. Since then, RWRE have been developed
far beyond this original motivation, resulting into a wealth of fine proba-
bilistic results. Some recent surveys on the subject include Hughes (1996)
and Zeitouni (2004).

Recently, these models have regained interest from biophysics, as they fit
the description of some physical experiments that unzip the double strand of
a DNA molecule. More precisely, some fifteen years ago, the first experiments
on unzipping a DNA sequence have been conducted, relying on several differ-
ent techniques (see Baldazzi et al., 2006, 2007, and the references therein).
By that time, these experiments primarily took place in the quest for al-
ternative (cheaper and/or faster) sequencing methods. When conducted in
the presence of bounding proteins, such experiments also enabled the iden-
tification of specific locations at which proteins and enzymes bind to the
DNA (Koch et al., 2002). Nowadays, similar experiments are conducted in
order to investigate molecular free energy landscapes with unprecedented ac-
curacy (Alemany et al., 2012; Huguet et al., 2009). Among other biophysical
applications, one can mention the study of the formation of DNA or RNA
hairpins (Bizarro et al., 2012).

Despite the emergence of data that is naturally modeled by RWRE, it
appears that very few statistical issues on those processes have been studied
so far. Very recently, Andreoletti and Diel (2012) considered a problem
inspired by an experiment on DNA unzipping (Baldazzi et al., 2006, 2007;
Cocco and Monasson, 2008), where the aim is to predict the sequence of
bases relying on the observation of several unzipping of one finite length
DNA sequence. Up to some approximations, the problem boils down to
considering independent and identically distributed (i.i.d.) replicates of a
one dimensional nearest neighbour path (i.e. the walk has ±1 increments)
in the same finite and two-sites dependent environment, up to the time each
path reaches some value M (the sequence length). In this setup, the authors
consider both a discrete time and a continuous time model. They provide
estimates of the values of the environment at each site, which corresponds to
estimating the sequence letters of the DNA molecule. Moreover, they obtain
explicit formula for the probability to be wrong for a given estimator, thus
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evaluating the quality of the prediction.
In the present work, we study a different problem, also motivated by

some DNA unzipping experiments: relying on an arbitrary long trajectory
of a transient one-dimensional nearest neighbour path, we would like to es-
timate the parameters of the environment’s distribution. Our motivation
comes more precisely from the most recent experiments, that aim at char-
acterising free binding energies between base pairs relying on the unzipping
of a synthetic DNA sequence (Ribezzi-Crivellari et al., 2011). In this setup,
the environment is still considered as random as those free energies are un-
known and need to be estimated. While our asymptotic setup is still far from
corresponding to the reality of those experiments, our work might give some
insights on statistical properties of estimates of those binding free energies.

The parametric estimation of the environment distribution has already
been studied in Adelman and Enriquez (2004). In their work, the authors
consider a very general RWRE and provide equations relying the distribution
of some statistics of the trajectory to some moments of the environment
distribution. In the specific case of a one-dimensional nearest neighbour path,
those equations give moment estimators for the environment distribution
parameters. It is worth mentioning that due to its great generality, the
method is hard to understand at first, but it takes a simpler form when
one considers the specific case of a one-dimensional nearest-neighbour path.
Now, the method has two main drawbacks: first, it is not generic in the
sense that it has to be designed differently for each parametric setup that is
considered. Namely, the method relies on the choice of a one-to-one mapping
between the parameters and some moments. In particular, when choosing a
set of moment equations, injectivity of the induced mapping might even not
be simple to establish (see for instance the case of Example II below, further
developed in Section 5.1). Second, from a statistical point of view, it is clear
that some mappings will give better results than others. Thus the specific
choice of a mapping has an impact on the estimator’s performance.

As an alternative, we propose here to consider maximum likelihood es-
timation of the parameters of the environment distribution. We consider a
transient nearest neighbour path in a random environment, for which we are
able to define some criterion - that we call a log-likelihood of the observed
process, see (8) below. Our estimator is then defined as the maximiser of this
criterion - thus a maximum likelihood estimator. When properly normalised,
we prove that this criterion is convergent as the size of the path increases
to infinity. This part of our work relies on using the link between RWRE

3



and branching processes in random environments (BPRE). While this link
is already well-known in the literature, we provide an explicit characterisa-
tion of the limiting distribution of the BPRE that corresponds to our RWRE
(see theorem 4.5 below). Relying on this precise characterisation, we then
further prove that the limit of our normalised criterion is finite in what is
called the ballistic region, namely the set of parameters such that the path
has a linear increase (see Section 2.1 below for more details). Then, follow-
ing standard statistical results, we are able to establish the consistency of
our estimator. We also provide synthetic experiments to compare the effec-
tive performance of our estimator and Adelman and Enriquez’s procedure.
In the cases where Adelman and Enriquez’s estimator is easily settled, while
the two methods exhibit the same performance with respect to their bias, our
estimator exhibits a much smaller variance. We mention that establishing
asymptotic normality of this estimator requires much more technicalities and
is out of the scope of the present work. This point is studied in a companion
article, together with variance estimates and confidence intervals (?).

The article is organised as follows. Section 2.1 introduces our setup: the
one dimensional nearest neighbour path, and recalls some well-known results
about the behaviour of those processes. Then in Section 2.2, we present
the construction of our M-estimator (i.e. an estimator maximising some
criterion function), state the assumptions required on the model as well as
our consistency result (Section 2.3). Section 3 presents some examples of
environment distributions for which the model assumptions are satisfied so
that our estimator is consistent. Now, the proof of our consistency result
is presented in Section 4. The section starts by recalling the link between
RWRE and BPRE (Section 4.1). Then, we state our core result: the explicit
characterisation of the limiting distribution of the branching process that is
linked with our path; and its corollary: the existence of a (possibly infinite)
limit for the normalised criterion (Section 4.2). In Section 4.3 we first provide
a technical result on the uniformity of this convergence, then establish that
in the ballistic case, the limit of the normalised criterion is finite. An almost
converse statement is also given (Lemma 4.9). To conclude this part, we
prove in Section 4.4 that the limiting criterion identifies the true parameter
value (under a natural identifiability assumption on the model parameter).
Finally, numerical experiments are presented in Section 5.2, focusing on the
three examples that were developed in Section 3. Note that we also provide
an explicit description of the form of Adelman and Enriquez’s estimator in the
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particular case of the one-dimensional nearest neighbour path in Section 5.1.

2. Definitions, assumptions and results

2.1. Random walk in random environment
Let ω = {ωx}x∈Z be an independent and identically distributed (i.i.d.)

collection of (0, 1)-valued random variables with distribution ν. The pro-
cess ω represents a random environment in which the random walk will
evolve. We suppose that the law ν = νθ depends on some unknown pa-
rameter θ ∈ Θ, where Θ ⊂ Rd is assumed to be a compact set. Denote
by Pθ = ν⊗Zθ the law on (0, 1)Z of the environment {ωx}x∈Z and by Eθ the
expectation under this law.

For fixed environment ω, let X = {Xt}t∈N be the Markov chain on Z
starting at X0 = 0 and with transition probabilities

Pω(Xt+1 = y|Xt = x) =


ωx if y = x+ 1,
1− ωx if y = x− 1,
0 otherwise.

The symbol Pω denotes the measure on the path space of X given ω, usually
called quenched law. The (unconditional) law of X is given by

Pθ(·) =

∫
Pω(·)dPθ(ω),

this is the so-called annealed law. We write Eω and Eθ for the corresponding
quenched and annealed expectations, respectively. We start to recall some
well-known asymptotic results. Introduce a family of i.i.d. random variables,

ρx =
1− ωx
ωx

, x ∈ Z, (1)

and assume that log ρ0 is integrable. Solomon (1975) proved the following
classification:

(a) if Eθ(log ρ0) < 0, then

lim
t→∞

Xt = +∞, Pθ-almost surely.
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(b) If Eθ(log ρ0) = 0, then

−∞ = lim inf
t→∞

Xt < lim sup
t→∞

Xt = +∞, Pθ-almost surely.

The case of Eθ(log ρ0) > 0 follows from (a) by changing the sign of X. Note
that the walk X is Pθ-almost surely transient in case (a) and recurrent in
case (b).

In the present paper, we restrict to the case (a) when X is transient to the
right. Then, it was also found that the rate of its increase (with respect to
time t) is either linear or slower than linear. The first case is called ballistic
case and the second one sub-ballistic case. More precisely, letting Tn be the
first hitting time of the positive integer n,

Tn = inf{t ∈ N : Xt = n}, (2)

and assuming Eθ(log ρ0) < 0 all through, we have

(a1) if Eθ(ρ0) < 1, then, Pθ-almost surely,

Tn
n
−−−→
n→∞

1 + Eθ(ρ0)

1− Eθ(ρ0)
, (3)

(a2) If Eθ(ρ0) ≥ 1, then Tn/n → +∞ Pθ-almost surely, when n tends to
infinity.

2.2. Construction of a M-estimator
We address the following statistical problem: estimate the unknown pa-

rameter θ from a single observation of the RWRE path till the time it
reaches a distant site. Assuming transience to the right, we then observe
X[0,Tn] = {Xt : t = 0, 1, . . . , Tn}, for some n ≥ 1.

If x[0,t] := (x0, . . . , xt) is a nearest neighbour path of length t, we define
for all x ∈ Z,

L(x,x[0,t]) :=
t−1∑
s=0

1{xs = x; xs+1 = x− 1}, (4)

and R(x,x[0,t]) :=
t−1∑
s=0

1{xs = x; xs+1 = x+ 1}, (5)
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the number of left steps (resp. right steps) from site x. (Here, 1{·} denotes
the indicator function). We let also vt (resp. VTn) be the set of integers visited
by the path x[0,t] (resp. X[0,Tn]). Consider now a nearest neighbour path x[0,tn]

starting from 0 and first hitting site n at time tn. It is straightforward to
compute its quenched and annealed probabilities, respectively

Pω(X[0,Tn] = x[0,tn]) =
∏
x∈vtn

ω
R(x,x[0,tn])
x (1− ωx)

L(x,x[0,tn])

and

Pθ(X[0,tn] = x[0,tn]) =
∏
x∈vtn

∫ 1

0

aR(x,x[0,tn])(1− a)L(x,x[0,tn])dνθ(a).

Under the following assumption, these weights add up to 1 over all possible
choices of x[0,tn].

Assumption I. (Transience to the right). For any θ ∈ Θ, Eθ| log ρ0| < ∞
and

Eθ(log ρ0) < 0.

Introducing the short-hand notation

Lnx := L(x,X[0,Tn]) and Rn
x := R(x,X[0,Tn]),

we can express the (annealed) log-likelihood of the observations as

˜̀
n(θ) =

n−1∑
x=0

log

∫ 1

0

aR
n
x (1− a)L

n
xdνθ(a) +

∑
x<0,x∈VTn

log

∫ 1

0

aR
n
x (1− a)L

n
xdνθ(a).

(6)
Note that as the random walk X starts from 0 (namely X0 = 0) and is
observed until the first hitting time Tn of n ≥ 1, we have Rn

x = Lnx+1 + 1 for
x = 1, 2, . . . , n− 1. We will perform this change in the first line of the right-
hand side of (6). Also, since the walk is transient to the right (Assumption I),
the second sum in the right-hand side (accounting for negative sites x) is
almost surely bounded. Hence, this sum will not influence in a significant
way the behaviour of the normalised log-likelihood, and we will drop it.
Therefore, we are led to the following choice.
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Definition 2.1. Let φθ be the function from N2 to R given by

φθ(x, y) = log

∫ 1

0

ax+1(1− a)ydνθ(a). (7)

The criterion function θ 7→ `n(θ) is defined as

`n(θ) =
n−1∑
x=0

φθ(L
n
x+1, L

n
x), (8)

that is the first sum (dominant term) in (6).

We maximise this criterion function to obtain an estimator of the un-
known parameter. To prove convergence of the estimator, some assumptions
are further required.

Assumption II. (Ballistic case). For any θ ∈ Θ, Eθ(ρ0) < 1.

As already mentioned, Assumption I is equivalent to the transience of the
walk to the right, and together with Assumption II, it implies positive speed.

Assumption III. (Continuity). For any x, y ∈ N, the map θ 7→ φθ(x, y) is
continuous on Θ.

Assumption III is equivalent to the map θ 7→ νθ being continuous on Θ
with respect to the weak topology.

Assumption IV. (Identifiability). ∀(θ, θ′) ∈ Θ2, νθ 6= νθ′ ⇐⇒ θ 6= θ′.

Assumption V. The collection of probability measures {νθ : θ ∈ Θ} is such
that

inf
θ∈Θ

Eθ[log(1− ω0)] > −∞.

Note that under Assumption II we have Eθ[logω0] > − log 2 for any
θ ∈ Θ. Assumptions III and V are technical and involved in the proof of
the consistency of our estimator. Assumption IV states identifiability of the
parameter θ with respect to the environment distribution νθ and is necessary
for estimation.

According to Assumption III, the function θ 7→ `n(θ) is continuous on the
compact parameter set Θ. Thus, it achieves its maximum, and we define the
estimator θ̂n as a maximiser.
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Definition 2.2. An estimator θ̂n of θ is defined as a measurable choice

θ̂n ∈ Argmax
θ∈Θ

`n(θ). (9)

Note that θ̂n is not necessarily unique.

Remark 2.3. The estimator θ̂n is a M-estimator, that is, the maximiser
of some criterion function of the observations. The criterion `n is not ex-
actly the log-likelihood for we neglected the contribution of the negative sites.
However, with some abuse of notation, we call θ̂n a maximum likelihood es-
timator.

2.3. Asymptotic consistency of the estimator in the ballistic case
From now on, we assume that the process X is generated under the true

parameter value θ?, an interior point of the parameter space Θ, that we
want to estimate. We shorten to P? and E? (resp. P? and E?) the annealed
probability Pθ? and its corresponding expectation Eθ? (resp. the law of the
environnment Pθ? and its corresponding expectation Eθ?) under parameter
value θ?.

Theorem 2.4. (Consistency). Under Assumptions I to V, for any choice of
θ̂n satisfying (9), we have

lim
n→∞

θ̂n = θ?,

in P?-probability.

3. Examples

3.1. Environment with finite and known support
Example I. Fix a1 < a2 ∈ (0, 1) and let ν = pδa1 + (1 − p)δa2, where δa is
the Dirac mass located at a. Here, the unknown parameter is the proportion
p ∈ Θ ⊂ [0, 1] (namely θ = p). We suppose that a1, a2 and Θ are such that
Assumptions I and II are satisfied.

In the framework of Example I, we have

φp(x, y) = log[pax+1
1 (1− a1)y + (1− p)ax+1

2 (1− a2)y], (10)
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and

`n(p) := `n(θ) =
n−1∑
x=0

log
[
pa

Lnx+1+1

1 (1−a1)
Lnx + (1−p)aL

n
x+1+1

2 (1−a2)
Lnx
]
. (11)

Now, it is easily seen that Assumptions III to V are satisfied. Coupling
this point with the concavity of the function p 7→ `n(p) implies that p̂n =
Argmaxp∈Θ `n(p) is well-defined and unique (as Θ is a compact set). There
is no analytical expression for the value of p̂n. Nonetheless, this estimator
may be easily computed by numerical methods. Finally, it is consistent from
Theorem 2.4.

This example is easily generalised to ν having m ≥ 2 support points
namely ν =

∑m
i=1 piδai , where a1, . . . , am are distinct, fixed and known in

(0, 1), we let pm = 1−
∑m−1

i=1 pi and the parameter is now θ = (p1, . . . , pm−1).

3.2. Environment with two unknown support points
Example II. We let ν = pδa1 + (1− p)δa2 and now the unknown parameter
is θ = (p, a1, a2) ∈ Θ, where Θ is a compact subset of

(0, 1)× {(a1, a2) ∈ (0, 1)2 : a1 < a2}.

We suppose that Θ is such that Assumptions I and II are satisfied.

This case is particularly interesting as it corresponds to one of the setups
in the DNA unzipping experiments, namely estimating binding energies with
two types of interactions: weak or strong.

The function φθ and the criterion `n(·) are given by (10) and (11), respec-
tively. It is easily seen that Assumptions III to V are satisfied in this setup,
so that the estimator θ̂n is well-defined. Once again, there is no analytical
expression for the value of θ̂n. Nonetheless, this estimator may also be easily
computed by numerical methods. Thanks to Theorem 2.4, it is consistent.

3.3. Environment with Beta distribution
Example III. We let ν be a Beta distribution with parameters (α, β), namely

dν(a) =
1

B(α, β)
aα−1(1− a)β−1da, B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt.

Here, the unknown parameter is θ = (α, β) ∈ Θ where Θ is a compact subset
of

{(α, β) ∈ (0,+∞)2 : α > β + 1}.
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As Eθ(ρ0) = β/(α− 1), the constraint α > β + 1 ensures that Assumptions I
and II are satisfied.

In the framework of Example III, we have

φθ(x, y) = log
B(x+ 1 + α, y + β)

B(α, β)
(12)

and

`n(θ) = −n log B(α, β) +
n−1∑
x=0

log B(Lnx+1 + α + 1, Lnx + β)

=
n−1∑
x=0

log
(Lnx+1+α)(Lnx+1+α−1) . . . α× (Lnx+β−1)(Lnx+β−2) . . . β

(Lnx+1+Lnx+α+β−1)(Lnx+1+Lnx+α+β−2) . . . (α + β)
.

In this case, it is easily seen that Assumptions III to V are satisfied, ensuring
that θ̂n is well-defined. Moreover, thanks to Theorem 2.4, it is consistent.

4. Consistency

The proof of Theorem 2.4 relies on classical theory about the convergence
of maximum likelihood estimators, as stated for instance in the classical
approach by Wald (1949) for i.i.d. random variables. We refer for instance
to Theorem 5.14 in van der Vaart (1998) for a simple presentation of Wald’s
approach and further stress that the proof is valid on a compact parameter
space only. It relies on the two following ingredients.

Theorem 4.1. Under Assumptions I to V, there exists a finite deterministic
limit `(θ) such that

1

n
`n(θ) −−−→

n→∞
`(θ) in P?-probability,

and this convergence is "locally uniform" with respect to θ.

The sense of the local uniform convergence is specified in Lemma 4.7 in
Subsection 4.3, and the value of `(θ) is given in (17).

Proposition 4.2. Under Assumptions I to V, for any ε > 0,

sup
θ:‖θ−θ?‖≥ε

`(θ) < `(θ?).
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Theorem 4.1 induces a pointwise convergence of the normalised crite-
rion `n/n to some limiting function `, and is weaker than assuming uniform
convergence. Proposition 4.2 states that the former limiting function ` iden-
tifies the true value of the parameter θ?, as the unique point where it attains
its maximum.

Here is the outline of the current section. In Subsection 4.1, we recall
some preliminary results linking RWRE with branching processes in random
environment (BPRE). In Subsection 4.2, we define the limiting function `
involved in Theorem 4.1 thanks to a law of large numbers (LLN) for Markov
chains. In Subsections 4.3 and 4.4, we prove Theorem 4.1 and Proposition 4.2,
respectively. It is important to note that the limiting function ` exists as
soon as the walk is transient. However, it is finite in the ballistic case and
everywhere infinite in the sub-ballistic regime of uniformly elliptic walks,
see Lemma 4.9. This latter fact prevents the identification result stated in
Proposition 4.2 and explains why we obtain consistency only in the ballistic
regime. From all these ingredients, the consistency of θ̂n, that is, the proof
of Theorem 2.4 easily follows.

4.1. From RWRE to branching processes
We start by recalling some already known results linking RWRE with

branching processes in random environment (BPRE). Indeed, it has been
previously observed in Kesten et al. (1975) that for fixed environment ω =
{ωx}x∈Z, under quenched distribution Pω, the sequence Lnn, Lnn−1, . . . , L

n
0 of

the number of left steps performed by the process X[0,Tn] from sites n, n −
1, . . . , 0, has the same distribution as the first n generations of an inhomo-
geneous branching process with one immigrant at each generation and with
geometric offspring.

More precisely, for any fixed value n ∈ N∗ and fixed environment ω,
consider a family of independent random variables {ξk,i : k ∈ {1, . . . , n}, i ∈
N} such that for each fixed value k ∈ {1, . . . , n}, the {ξk,i}i∈N are i.i.d. with
a geometric distribution on N of parameter ωn−k, namely

∀m ∈ N, Pω(ξk,i = m) = (1− ωn−k)mωn−k.

Then, let us consider the sequence of random variables {Zn
k }k=0,...,n defined

recursively by

Zn
0 = 0, and for k = 0, . . . , n− 1, Zn

k+1 =

Znk∑
i=0

ξk+1,i.
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The sequence {Zn
k }k=0,...,n forms an inhomogeneous BP with immigration

(one immigrant per generation corresponding to the index i = 0 in the above
sum) and whose offspring law depends on n (hence the superscript n in
notation Zn

k ). Then, we obtain that

(Lnn, L
n
n−1, . . . , L

n
0 ) ∼ (Zn

0 , Z
n
1 , . . . , Z

n
n),

where ∼ means equality in distribution. When the environment is random
as well, and since (ω0, . . . , ωn) has the same distribution as (ωn, . . . , ω0), it
follows that under the annealed law P?, the sequence Lnn, Lnn−1, . . . , L

n
0 has

the same distribution as a branching process in random environment (BPRE)
Z0, . . . , Zn, defined by

Z0 = 0, and for k = 0, . . . , n, Zk+1 =

Zk∑
i=0

ξ′k+1,i, (13)

with {ξ′k,i}k∈N∗;i∈N independent and

∀m ∈ N, Pω(ξ′k,i = m) = (1− ωk)mωk.

Now, when the environment is assumed to be i.i.d., this BPRE is under
annealed law a homogeneous Markov chain. We explicitly state this result
because it is important; however its proof is immediate and therefore omitted.

Proposition 4.3. Suppose that {ωn}n∈N are i.i.d. with distribution νθ. Then
{Zn}n∈N is a homogeneous Markov chain whose transition kernel Qθ is given
by

Qθ(x, y) =

(
x+ y

x

)
eφθ(x,y) =

(
x+ y

x

)∫ 1

0

ax+1(1− a)ydνθ(a). (14)

Proof. Equation (14) comes from the fact that the sum of x+ 1 independent
random variables following the geometric distribution on N with probability
of success p is a negative binomial.

Finally, going back to (8) and the definition (7) of φθ, the annealed log-
likelihood satisfies the following equality

`n(θ) ∼
n−1∑
k=0

φθ(Zk, Zk+1) under P?. (15)
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Remark 4.4. Up to an additive constant (not depending on θ), the right-
hand side of (15) is the log-likelihood of the Markov chain {Zk}0≤k≤n. Indeed,
we have

logQθ(x, y) = log

(
x+ y

x

)
+ φθ(x, y), ∀x, y ∈ N.

We prove in the next section a weak law of large numbers for the sequence
{φθ(Zk, Zk+1)}k∈N and according to (15), this is sufficient to obtain a weak
convergence of `n(θ)/n.

4.2. Existence of a limiting function
It was shown by Key (Theorem 3.3, 1987) that under Assumption I (and

for a non-necessarily i.i.d. environment), the sequence {Zn}n∈N converges in
annealed law to a limit random variable Z̃0 which is almost surely finite. An
explicit construction of Z̃0 is given by Equation (2.2) in Roitershtein (2007).
In fact, a complete stationary version {Z̃n}n∈Z of the sequence {Zn}n∈N is
given and such a construction allows for an ergodic theorem. In the i.i.d.
environment setup, we obtain more precise results than what is provided
by Key (Theorem 3.3, 1987), as {Zn}n∈N is a Markov chain. Thus Theo-
rem 4.5 below is specific to our setup: geometric offspring distribution, one
immigrant per generation and i.i.d. environment. We specify the form of
the limiting distribution of the sequence {Zn}n∈N and characterise its first
moment. We later rely on these results to establish a strong law of large
numbers for the sequence {φθ(Zk, Zk+1)}k∈N.

Theorem 4.5. Under Assumption I, for all θ ∈ Θ the following assertions
hold

i) The Markov chain {Zn}n∈N is positive recurrent and admits a unique
invariant probability measure πθ satisfying

lim
n→∞

Pθ(Zn = k) = πθ(k), ∀k ∈ N.

ii) Moreover, for all k ∈ N, we have πθ(k) = Eθ[S(1− S)k], where

S := (1 + ρ1 + ρ1ρ2 + · · ·+ ρ1 . . . ρn + . . . )−1 ∈ (0, 1).

In particular, we have
∑

k∈N kπθ(k) =
∑

n≥1(Eθρ0)n, and the distribu-
tion πθ has a finite first order moment only in the ballistic case.
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Proof. We introduce the quenched probability generating function of the ran-
dom variables ξ′n,i and Zn introduced in (13), respectively defined for any
u ∈ [0, 1] by

Hn(u) := Eω

(
uξ
′
n,0

)
=

ωn
1− (1− ωn)u

, and Fn(u) := Eω
(
uZn
)
,

as well as the quantities Sn and S̃n defined as

S−1
n = 1 + ρn + ρnρn−1 + · · ·+ ρn . . . ρ1,

S̃−1
n = 1 + ρ1 + ρ1ρ2 + · · ·+ ρ1 . . . ρn.

According to (13), we have

Fn+1(u) = Fn[Hn+1(u)]×Hn+1(u),

and a simple computation yields

Fn(u) =
Sn

1− (1− Sn)u
,

for any u ∈ [0, 1]. This means that under quenched law Pω, the random
variable Zn follows a geometric distribution on N with parameter Sn. Note
that Sn and S̃n have the same distribution under Pθ, implying that Fn(u)
has the same distribution as

S̃n

1− (1− S̃n)u
.

Under Assumption I, we have Pθ-a.s.

lim
n→∞

1

n
log(ρ1 . . . ρn) = lim

n→∞

1

n

n∑
i=1

log ρi = Eθ log ρ0 := m < 0,

and hence

Pθ
(
∃ n(ω), s.t. ∀n > n(ω), ρ1 . . . ρn ≤ enm/2

)
= 1.

Then, as n → +∞, S̃n ↘ S = (1 + ρ1 + ρ1ρ2 + . . . )−1 Pθ-a.s. with Pθ(0 <
S < 1) = 1. As a consequence, the quenched probability generating function
Fn(u) converges in distribution under Pθ to

F (u) =
S

1− (1− S)u
,
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the probability generating function of a geometric distribution with param-
eter S. Under annealed law, for any k ∈ N we have

Pθ(Zn = k) = EθPω(Zn = k) = Eθ
[
Sn (1− Sn)k

]
= Eθ

[
S̃n

(
1− S̃n

)k]
.

Since 0 < S̃n < 1, dominated convergence implies that for all k ∈ N,

lim
n→+∞

Pθ(Zn = k) = Eθ
[
S (1− S)k

]
:= πθ(k). (16)

As an immediate consequence, we obtain∑
k∈N

kπθ(k) = Eθ
(
S−1 − 1

)
=
∞∑
n=1

(Eθρ0)n,

Moreover, by Fubini-Tonelli’s theorem and Pθ(0 < S < 1) = 1, we have∑
k∈N

πθ(k) = 1 and πθ(k) > 0, ∀k ∈ N.

Thus the measure πθ on N is a probability measure and thanks to (16), it
is invariant. We note that {Zn}n∈N is irreducible as the transitions Qθ(x, y)
defined by (14) are positive and the measure νθ is not degenerate. Thus, the
chain is positive recurrent and πθ is unique (see for instance Norris, 1998,
Theorem 1.7.7). This concludes the proof.

Let us define {Z̃n}n∈N as the stationary Markov chain with transition
matrix Qθ? defined by (14) and initial distribution π? := πθ? introduced in
Theorem 4.5. It will not be confused with {Zn}n∈N from (13). We let `(θ)
be defined as

`(θ) = E?[φθ(Z̃0, Z̃1)] ∈ [−∞, 0], (17)

where φθ is defined according to (7). (Note that the quantity `(θ) may not
necessarily be finite). As a consequence of the irreducibility of the chain
{Zn}n∈N and Theorem 4.5, we obtain the following ergodic theorem (see for
instance Norris, 1998, Theorem 1.10.2).

Proposition 4.6. Under Assumption I, for all θ ∈ Θ, the following ergodic
theorem holds

lim
n→∞

1

n

n−1∑
k=0

φθ(Zk, Zk+1) = `(θ) P?-almost surely.
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4.3. Local uniform convergence and finiteness of the limit
According to (15) and Proposition 4.6, we obtain

lim
n→∞

1

n
`n(θ) = `(θ) in P?-probability. (18)

To achieve the proof of Theorem 4.1, it remains to prove that the convergence
is "locally uniform" and that the limit `(θ) is finite for any value of θ. The
local uniform convergence is given by Lemma 4.7 below while Proposition 4.8
gives a sufficient condition for the latter fact to occur.

Lemma 4.7. Under Assumption I, the following local uniform convergence
holds: for any open subset U ⊂ Θ,

1

n

n−1∑
x=0

sup
θ∈U

φθ(L
n
x+1, L

n
x) −−−→

n→∞
E?
(

sup
θ∈U

φθ(Z̃0, Z̃1)
)

in P?-probability .

Proof of Lemma 4.7. Let us fix an open subset U ⊂ Θ and note that

1

n

n−1∑
x=0

sup
θ∈U

φθ(L
n
x+1, L

n
x) ∼ 1

n

n−1∑
k=0

ΦU(Zk, Zk+1),

where we have ΦU := supθ∈U φθ. As the function ΦU is non-positive, the
expectation E?(ΦU(Z̃0, Z̃1)) exists and relying again on the ergodic theorem
for Markov chains, we obtain the desired result.

Proposition 4.8. (Ballistic case). As soon as

E?(ρ0) < 1, (19)

the limit `(θ) is finite for any value θ ∈ Θ.

Proof of Proposition 4.8. For all x ∈ N, y ∈ N, by using Jensen’s inequality,
we may write

log

∫ 1

0

ax+1(1− a)ydνθ(a) ≥ (x+ 1)Eθ[log(w0)] + yEθ[log(1− w0)]. (20)

This implies that for any k ∈ N,

φθ(Zk, Zk+1) ≥ (Zk + 1)Eθ[log(w0)] + Zk+1Eθ[log(1− w0)],
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and in particular

1

n

n−1∑
k=0

φθ(Zk, Zk+1) ≥ Eθ[log(w0)]
1

n

n−1∑
k=0

(Zk + 1) + Eθ[log(1− w0)]
1

n

n−1∑
k=0

Zk+1.

(21)
Now, as a consequence of Theorem 4.5, we know that in the ballistic case
given by (19) the expectation E?(Z̃0) is finite. From the ergodic theorem,
P?-almost surely,

1

n

n−1∑
k=0

(Zk + 1) −−−→
n→∞

E?(Z̃0) + 1 and
1

n

n−1∑
k=0

Zk+1 −−−→
n→∞

E?(Z̃0). (22)

Combining this convergence with the lower bound in (21), we obtain `(θ) ∈
(−∞, 0] in this case.

The next lemma specifies that condition (19) is necessary for `(θ) to be
finite at least in a particular case.

Lemma 4.9. (Converse result in the uniformly elliptic case). Assume that
νθ([δ, 1 − δ]) = 1 for some δ > 0 and all θ ∈ Θ (uniformly elliptic walk).
Then, in the sub-ballistic case, that is E?(ρ0) ≥ 1, the limit `(θ) is infinite
for all parameter values.

Proof. For any integers x and y and any a in the support of νθ, we have

0 < δx+1 ≤ ax+1 ≤ (1− δ)x+1, 0 < δy ≤ (1− a)y ≤ (1− δ)y,

and then

(x+ y + 1) log(δ) ≤ log

∫ 1

0

ax+1(1− a)ydνθ(a) ≤ (x+ y + 1) log(1− δ).

This implies that for any k ∈ N,

(Zk + Zk+1 + 1) log(δ) ≤ φθ(Zk, Zk+1) ≤ (Zk + Zk+1 + 1) log(1− δ),

and in particular

1

n

n−1∑
k=0

φθ(Zk, Zk+1) ≤ log(1− δ) 1

n

n−1∑
k=0

(Zk + Zk+1 + 1). (23)

According to Proposition 4.6, the lower bound of (23) converges to `(θ).
Combining the convergence (22) with the latter fact implies that as soon as
`(θ) > −∞, we get E?(Z̃0) < +∞ which is equivalent to

∑
n≥1(E?ρ0)n <∞

according to point ii) in Theorem 4.5. This corresponds to E?(ρ0) < 1.
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4.4. Identification of the true parameter value
Fix ε > 0. We want to prove that under Assumptions I to V,

sup
θ:‖θ−θ?‖≥ε

`(θ) < `(θ?).

First of all, note that according to Proposition 4.8, Assumption II ensures
that `(θ) is finite for any value θ ∈ Θ.

Now, we start by proving that for any θ ∈ Θ, we have `(θ) ≤ `(θ?).
According to (17), we may write

`(θ)− `(θ?) = E?[φθ(Z̃0, Z̃1)− φθ?(Z̃0, Z̃1)],

which may be rewritten as∑
x∈N

π?(x)

[∑
y∈N

log

(
Qθ(x, y)

Qθ?(x, y)

)
Qθ?(x, y)

]
.

Using Jensen’s inequality with respect to the logarithm function and the
(conditional) distribution Qθ?(x, ·) yields

`(θ)− `(θ?) ≤
∑
x∈N

π?(x) log
(∑
y∈N

Qθ(x, y)

Qθ?(x, y)
Qθ?(x, y)

)
= 0. (24)

The equality in (24) occurs if and only if for any x ∈ N, we have Qθ(x, ·) =
Qθ?(x, ·), which is equivalent to the probability measures νθ and νθ? having
identical moments. Since their supports are included in the bounded set
(0, 1), these probability measures are then identical (see for instance Shiryaev,
1996, Chapter II, Paragraph 12, Theorem 7). Hence, the equality `(θ) = `(θ?)
yields νθ = νθ? which is equivalent to θ = θ? from Assumption IV.

In other words, we proved that `(θ) ≤ `(θ?) with equality if and only if
θ = θ?. To conclude the proof of Proposition 4.2, it suffices to establish that
the function θ 7→ `(θ) is continuous.

From Inequality (20) and Assumption V, we know that there exists a
positive constant A such that for any θ ∈ Θ,∣∣∣φθ(Z̃0, Z̃1)

∣∣∣ ≤ A(1 + Z̃0 + Z̃1).

Under Assumption II, we know that E?(Z̃0) = E?(Z̃1) is finite, and under
Assumption III, the function θ 7→ φθ(x, y) is continuous for any pair (x, y).
We deduce that the function θ 7→ `(θ) is continuous.
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5. Numerical performance

In this section, we explore the numerical performance of our estimation
procedure and compare it with the performance of the estimator proposed
by Adelman and Enriquez (2004). As this latter procedure is rather involved
and far more general than ours, we start by describing its form in our specific
context in Section 5.1. The simulation protocol as well as corresponding
results are given in Section 5.2, where we focus on Examples I to III.

5.1. Estimation procedure of Adelman and Enriquez (2004)
The estimator proposed by Adelman and Enriquez (2004) is a moment

estimator. It is based on collecting information on sites displaying some
specified histories. We briefly explain it in our context: the one dimensional
RWRE.

Let H(t, x) denote the history of site x at time t defined as

H(t, x) = (L(x,X[0,t]), R(x,X[0,t])),

where L(x,X[0,t]) and R(x,X[0,t]) are respectively defined by (4) and (5), and
represent the number of left and right steps performed by the walk at site x
until time t. Note that H(0, x) = (0, 0) for any site x.

We define H(t) as the history of the currently occupied site Xt at time t,
that is

H(t) = H(t,Xt).

For any h = (h−, h+) ∈ N2, let {Kh
i }i≥0 be the successive times where the

history of the currently occupied site is h:

Kh
0 = inf{t ≥ 0 : H(t) = h}, Kh

i+1 = inf{t > Kh
i : H(t) = h}.

Define ∆h
i with values in {−1, 1} as

∆h
i = XKh

i +1 −XKh
i
,

which represents the move of the walk at time Kh
i , that is, the move at the

ith time where the history of the currently occupied site is h.
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According to Proposition 4 and Corollary 2 in Adelman and Enriquez
(2004), the random variables ∆h

i are i.i.d. and we have

lim
m→∞

1

m

m∑
i=1

1{∆h
i =1} = V1(h) P?-a.s., (25)

and lim
m→∞

1

m

m∑
i=1

1{∆h
i =−1} = V−1(h) P?-a.s., (26)

where

V1(h) =
E?[ω1+h+

0 (1− ω0)h− ]

E?[ωh+0 (1− ω0)h− ]
and V−1(h) =

E?[ωh+0 (1− ω0)1+h− ]

E?[ωh+0 (1− ω0)h− ]
.

The quantities V1(h) and V−1(h) are the annealed right and left transition
probabilities from the currently occupied site with history h. In particular,
in our case V1(h)+V−1(h) = 1. The consequence of the previous convergence
result is that by letting the histories h vary, we can potentially recover all the
moments of the distribution ν and thus this distribution itself. The strategy
underlying Adelman and Enriquez’s approach is then to estimate some well-
chosen moments V1(h) or V−1(h) so as to obtain a set of equations which has
to be inverted to recover parameter estimates.

We thus define Mh
n and for ε = ±1 the estimators V̂ n

ε (h) as

Mh
n = sup{Kh

i < Tn : i ≥ 1}, V̂ n
ε (h) =

1

Mh
n

Mh
n∑

i=1

1{∆h
i =ε}, ε = ±1.

The quantity V̂ n
ε (h) is either the proportion of sites from which the first move

is to the right (ε = 1) or to the left (ε = −1), among those with history h.
(In particular, V̂ n

1 (h) + V̂ n
−1(h) = 1.) Then, from (25) and (26) and the fact

that Tn goes to infinity P?-almost surely when n grows to infinity, we get

lim
n→∞

V̂ n
ε (h) = Vε(h) P?-almost surely.

Hence, we can estimate θ? by the solution of an appropriate system of equa-
tions, as illustrated below.
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Example I (continued). In this case the parameter θ equals p and we have

V1(0, 0) = E?[ω0] = p?a1 + (1− p?)a2.

Hence, among the visited sites (namely sites with history h = (0, 0)), the
proportion of those from which the first move is to the right gives an estimator
for p?a1 + (1− p?)a2. Using this observation, we can estimate p?.

Example II (continued). In this case the parameter θ equals (p, a1, a2) and
we may for instance consider

V1(0, 0) = p?a?1 + (1− p?)a?2,
V1(0, 1) = {p?[a?1]2 + (1− p?)[a?2]2} · V1(0, 0)−1, (27)
V1(0, 2) = {p?[a?1]3 + (1− p?)[a?2]3} · V1(0, 1)−1.

Hence, among the visited sites (sites with history h = (0, 0)), the proportion
of those from which the first move is to the right gives an estimator for
p?a?1 + (1 − p?)a?2. Among the sites visited at least twice from which the
first move is to the right (sites with history h = (0, 1)), the proportion of
those from which the second move is also to the right gives an estimator for
p?[a?1]2 +(1−p?)[a?2]2. Among the sites visited at least three times from which
the first and second moves are to the right (sites with history h = (0, 2)), the
proportion of those from which the third move is also to the right gives an
estimator for p?[a?1]3 + (1 − p?)[a?2]3. Using these three observations, we can
theoretically estimate p?, a?1 and a?2, as soon as the solution to this system of
three nonlinear equations is unique. Note that inverting the mapping defined
by (27) is not trivial. Moreover, while the moment estimators might have
small errors, inverting the mapping might result in an increase of this error
for the parameter estimates.

Example III (continued). In this case, the parameter θ equals (α, β) and we
have

V−1(0, 0) =
β?

α? + β?
and V−1(1, 0) =

β? + 1

α? + β? + 1
.

Hence, among the visited sites (sites with history h = (0, 0)), the proportion
of those from which the first move is to the left gives an estimator for β?

α?+β?
.

Among the sites visited at least twice from which the first move is to the
left (sites with history h = (1, 0)), the proportion of those from which the
second move is also to the left gives an estimator for β?+1

α?+β?+1
. Using these

two observations, we can estimate α? and β?.
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5.2. Experiments
We now present the three simulation experiments corresponding respec-

tively to Examples I to III. The comparison with Adelman and Enriquez’s
procedure is given only for Examples I and III. In those cases, while Adel-
man and Enriquez’s procedure may be easily performed, we already obtain
much better estimates with our approach. In the case of Example II, we were
not able to perform (even only numerically) the mapping inversion needed
to compute Adelman and Enriquez’s estimator. Thus, in the experiments
presented below, we choose to only consider our estimation procedure in the
case of Example II.

For each of the three simulations, we a priori fix a parameter value θ?
as given in Table 1 and repeat 1,000 times the procedure described below.
We first generate a random environment according to νθ? on the set of sites

Simulation Fixed parameter Estimated parameter
Example I (a1, a2) = (0.4, 0.7) p? = 0.3
Example II - (a?1, a

?
2, p

?) = (0.4, 0.7, 0.3)
Example III - (α?, β?) = (5, 1)

Table 1: Parameter values for each experiment.

{−104, . . . , 104}. In fact, we do not use the environment values for all the 104

negative sites, since only few of these sites are visited by the walk. However
the computation cost is very low comparing to the rest of the estimation
procedure, and the symmetry is convenient for programming purpose. Then,
we run a random walk in this environment and stop it successively at the
hitting times Tn defined by (2), with n ∈ {103k; 1 ≤ k ≤ 10}. For each stop,
we estimate θ? according to our procedure and Adelman and Enriquez’s one
(except for the second simulation). In the case of Example I, the likelihood
optimization procedure was performed as a combination of golden section
search and successive parabolic interpolation. In the cases of Examples III
and II, the likelihood optimization procedures were performed according to
the "L-BFGS-B" method of ? which uses a limited-memory modification
of the “BFGS” quasi-Newton method published simultaneously in 1970 by
Broyden, Fletcher, Goldfarb and Shanno. In all three cases, the parameters
in Table 1 are chosen such that the RWRE is transient and ballistic to the
right. Note that the length of the random walk is not n but rather Tn. This
quantity varies considerably throughout the three setups and the different
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iterations. Table 2 shows the quartiles of the hitting times Tn for some se-
lected values n (n = 1,000, 5,000 and 10,000), obtained from 1,000 iterations
of the procedures in Examples I and III.

Simulation Value of n Quartiles of the hitting times Tn
Example I n = 1, 000 Q1 = 6, 218 Q2 = 6, 769 Q3 = 7, 482

n = 5, 000 Q1 = 33, 224 Q2 = 34, 643 Q3 = 36, 316
n = 10, 000 Q1 = 67, 512 Q2 = 69, 662 Q3 = 72, 029

Example III n = 1, 000 Q1 = 1, 616 Q2 = 1, 660 Q3 = 1, 710
n = 5, 000 Q1 = 8, 212 Q2 = 8, 322 Q3 = 8, 438
n = 10, 000 Q1 = 16, 482 Q2 = 16, 640 Q3 = 16, 808

Table 2: Quartiles of the hitting times Tn obtained from 1, 000 iterations in Examples I
and III and for values n equal to 1, 000, 5, 000 and 10, 000.

Figure 1 shows the boxplots of our estimator and Adelman and Enriquez’s
estimator obtained from 1,000 iterations of the procedures in the two Exam-
ples I and III, while Figure 2 only displays these boxplots for our estimator
in Example II. First, we shall notify that in order to simplify the visualisa-
tion of the results, we removed in the boxplots corresponding to Example I
(Bottom panel of Figure 1) about 0.8% of outliers values from our estimator,
that where equal to 1. Indeed in those cases, the likelihood optimisation
procedure did not converge, resulting in the arbitrary value p̂ = 1. In the
same way for Example III, we removed from the figure parameter values of
Adelman and Enriquez’s estimator that were too large. It corresponds to
about 0.7% of values α̂ larger than 10 (for estimating α? = 5) and about
0.2% of values β̂ larger than 3 (for estimating β? = 1). In the following
discussion, we neglect these rather rare numerical issues. We first observe
that the accuracies of the procedures increase with the value of n and thus
the walk length Tn. We also note that both procedures are unbiased. The
main difference comes when considering the variance of each procedure (re-
lated to the width of the boxplots): our procedure exhibits a much smaller
variance than Adelman and Enriquez’s one as well as a smaller number of
outliers. We stress that Adelman and Enriquez’s estimator is expected to
exhibit its best performance in Examples I and III that are considered here.
Indeed, in these cases, inverting the system of equations that link the pa-
rameter to the moments distribution is particularly simple. One explanation
for the worse performance of Adelman and Enriquez’s estimator comparing
to our procedure is the fact that only a few part of the trajectory is used in
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the estimation. As it can be seen in Table 2, in the case of Example I the
length Tn of the path is up to 7 times larger than the number of visited sites
on which Adelman and Enriquez (2004)’s procedure is based. In the case of
Example III, this length is only about 1.6 times larger than the number of
visited sites. But the method also relies on the number of sites visited at
least twice, which is even smaller.
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Figure 1: Boxplots of our estimator (left and white) and Adelman and Enriquez’s estimator
(right and grey) obtained from 1,000 iterations and for values n ranging in {103k; 1 ≤ k ≤
10} (x-axis indicates the value k). Top panel displays estimation of p? in Example I.
Second and third panels display estimation of α? (second panel) and β? (third panel) in
Example III. The true values are indicated by horizontal lines.
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Figure 2: Boxplots of our estimator obtained from 1,000 iterations in Example II and for
values n ranging in {103k; 1 ≤ k ≤ 10} (x-axis indicates the value k). Estimation of a?1
(top panel), a?2 (middle panel) and p? (bottom panel). The true values are indicated by
horizontal lines.
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