Joint Hitting-Time Densities for Finite State Markov Processes

Tomasz R. Bielecki1,*, Monique Jeanblanc2†, Ali Devin Sezer2,3‡

1 Department of Applied Mathematics
Illinois Institute of Technology
Chicago, IL 60616, USA

2 Laboratoire Analyse et Probabilités
Université d’Évry Val d’Essonne
91025 Évry Cedex, France

3 Institute of Applied Mathematics,
Middle East Technical University,
Ankara, Turkey

February 27, 2014

Abstract

For a finite state Markov process and a finite collection \(\{\Gamma_k, k \in K\} \) of subsets of its state space, let \(\tau_k \) be the first time the process visits the set \(\Gamma_k \). We derive explicit/recursive formulas for the joint density and tail probabilities of the stopping times \(\{\tau_k, k \in K\} \). The formulas are natural generalizations of those associated with the jump times of a simple Poisson process. We give a numerical example and indicate the relevance of our results to credit risk modeling.

1 Introduction

One of the basic random variables associated with a Markov process \(X \) is its first hitting time to a given subset of its state space. In the present work we

*The research of T.R. Bielecki was supported by NSF Grant DMS-0604789 and NSF Grant DMS-0908099.
†The research of M. Jeanblanc benefited from the support of the ‘Chaire Marchés en mutation’, Fédération Bancaire Française.
‡The research of Ali Devin Sezer is supported by Rbuce-up Marie Curie European Project http://www.rbuceup.eu
will confine ourselves to finite state Markov processes. If X has an absorbing state and all of the states can communicate with it, the distribution of the first hitting time to the absorbing state is said to be a phase-type distribution. Phase-type distributions can model a wide range of phenomena in reliability theory, communications systems, in insurance and finance and go back to Erlang [8]. The literature on these distributions is immense, see, e.g., [4], [8], [10], [12], [1]. To the best of our knowledge, [3] introduced higher dimensional versions of phase-type distributions. Their setup, for the two dimensional case is as follows: take two proper subsets Γ_1 and Γ_2 of the state space, and assume that with probability 1 the process enters their intersection; let τ_k be the first time the process enters Γ_k. The joint distribution of (τ_1, τ_2) is a two dimensional phase type distribution. Higher dimensional versions are defined similarly for a finite collection of subsets $\{\Gamma_k, k \in K\}$ of the state space.

Denote the number of elements in K by $|K|$. Multidimensional phase type distributions can put nonzero mass on lower dimensional subsets of $\mathbb{R}_{+}^{|K|}$ and the density of the distribution when restricted to these subsets is called the “singular part of the distribution.” To the best of our knowledge, the only result available in the current literature giving a complete characterization of any multidimensional phase type density is the case of two dimensions treated in [3]. The same work derives a density formula for the nonsingular part of a phasetype distribution of arbitrary finite dimension, which is proved to be correct in [7]. The main contribution of the present paper is Theorem 3.2 which gives an explicit formula for the joint density (over appropriate subsets of $\mathbb{R}_{+}^{|K|}$) of the random vector $\tau = (\tau_k, k \in K)$ covering all possible singular and nonsingular parts. It turns out that it is simpler to work with no assumptions on whether $\{\Gamma_k, k \in K\}$ are absorbing or not. Thus, Theorem 3.2 gives the joint density of a collection of first hitting times for any finite state Markov process X. The formula for phasetype densities follows as a special case (see Proposition 4.1 for the one dimensional case and Proposition 4.2 for the general case).

The primary difficulty in the prior literature in identifying the singular part of the density seems to have stemmed from the method of derivation, which is: find expressions for tail probabilities and differentiate them. As will be seen in subsection 3.1 tail probabilities turn out to be more complicated objects than densities. Thus, we follow the opposite route and compute first the density directly using the following idea: for each $t \in \mathbb{R}_{+}^{|K|}$, $\tau = t$ is the limit of a specific and simple set of trajectories of the Markov process whose (vanishing) probability can be written in terms of the exponentials of submatrices of the intensity matrix. Subsection 3.1 explains the idea in its simplest form in the derivation of the density of a single τ_k, given as Theorem 3.1. The same idea extends to multiple hitting time in Subsection 3.2 and the multidimensional density is given as Theorem 3.2.
3.4 derives the tail probabilities of τ using the same idea; the result is given as Theorem 3.3. The formulas for tail probabilities are more complex and are best expressed recursively. We provide a second formula (31) which explicitly states some of the integration that is hidden in the completely recursive (26).

Let $\{\mathcal{F}_u, u \in \mathbb{R}_+\}$ be the filtration generated by X. The Markov property of X implies that the conditional density of τ given \mathcal{F}_u directly follows from the density formula (14), which we note as Proposition 3.2. In Section 4 we derive alternative expressions for the density and the tail probability formulas for absorbing $\{\Gamma_k\}$ and indicate the connections between our results and the prior literature. Section 5 gives a numerical example. We discuss potential applications of our results to credit risk modeling and point out several directions of future research in the conclusion.

2 Definitions

Let Ω_0 be a finite set and X a Ω_0-valued continuous time process defined over a measurable pair (Ω, \mathcal{F}) equipped with a family of measures $P_i, i \in \Omega_0$, such that $P_i(X_0 = i) = 1$. Under each P_i, X is assumed Markov with intensity matrix λ. Denote by P the collection of measures $\{P_i, i \in \Omega_0\}$ written as a column. If α is a probability measure on Ω_0 (written as a row), we will denote by $P\alpha$ the measure $P\alpha = \sum_{i \in \Omega_0} \alpha(i)P_i$ on (Ω, \mathcal{F}). It follows from these definitions that under $P\alpha$ the initial distribution of X is α, i.e., $P\alpha(X_0 = i) = \alpha(i)$. The total jump rate of the process when in state i is $-\lambda(i, i) = \sum_{j \neq i} \lambda(i, j)$. For a finite collection $\{\Gamma_k \subset \Omega_0, k \in K\}$ of subsets of Ω_0 define $\tau_k = \inf\{u \in (0, \infty) : X_u \in \Gamma_k\}$. The index set K can be any finite set, but we will always take it to be a finite subset of the integers. In the next section we derive formulas for the (conditional) joint density and tail probabilities of the stopping times $\{\tau_k, k \in K\}$. To ease notation, unless otherwise noted, we will assume throughout that $\Omega_0 - \bigcup_{k \in K} \Gamma_k$ is not empty and that the initial distribution α puts its full mass on this set, see Remark 3.2 and subsection 3.3 for comments on how one removes this assumption.

For a set a, a^c will mean its complement and if it is finite $|a|$ will mean the number of elements in it. For two subsets $a, b \subset \Omega_0$ define $\lambda(a, b) = \eta$ as

$$
\eta(i, j) = \begin{cases}
\lambda(i, j) & \text{if } i \in a, j \in b, \\
0 & \text{otherwise.}
\end{cases}
$$

For $a \subset \Omega_0$, we will write $\lambda(a)$ for $\lambda(a, a)$. We note $\lambda = \lambda(\Omega_0)$.

Throughout we will need to refer to zero matrices and vectors of various dimensions, we will write all as 0; the dimension will always be clear from the context.

For $a \subset \Omega_0$, take the identity matrix $I \in \mathbb{R}^{|\Omega_0| \times |\Omega_0|}$ and replace its rows whose indices appear in a^c with the 0 vector and call the resulting matrix
I_a, e.g., I_{Ω_0} is I itself and I_{\emptyset} is the zero matrix. The matrix I_a has the following action on matrices and vectors:

Lemma 2.1. Let n be a positive integer. For any $M \in \mathbb{R}^{\mid\Omega_0\mid \times n}$, I_aM is the same as M except that its rows whose indices are in a^c are replaced by 0 (a zero row vector of dimension n), i.e., if r_i is the i^{th} row of M then the i^{th} row of I_aM is r_i if $i \in a$ and 0 otherwise.

The proof follows from the definitions and is omitted. Right multiplication by I_a acts on the columns, i.e., MI_a is the same as M except now that the columns with indices in a^c are set to zero. As an operator on $\mid\Omega_0\mid$ dimensional vectors, I_a replaces with 0 the coordinates of the vector whose indices are in a^c.

It follows from the definition (1) of λ and Lemma 2.1 that

$$\lambda(a, b) = I_a \lambda I_b.$$ (2)

The operation of setting some of the columns of the identity matrix to zero commutes with set operations, i.e., one has

$$I_{a \cap b} = I_a I_b, \quad I_{a \cup b} = I_a + I_b - I_a I_b, \quad I_{a^c} = I - I_a.$$ (3)

Using this and Lemma 2.1 one can write any formula involving λ in a number of ways. For example, $\lambda(a^c, a)$ can be written as $I_{a^c} \lambda I_a = (I - I_a) \lambda I_a = \lambda I_a - I_a \lambda I_a$ or $\lambda(a, b \cap c)$ as $I_a \lambda I_{b \cap c} = I_a \lambda I_b I_c = I_a \lambda I_c I_b$.

2.1 Restriction and extension of vectors and τ as a random function

For any nonempty finite set a let \mathbb{R}^a be the set of functions from a to \mathbb{R}. \mathbb{R}^a is the same as $\mathbb{R}^{\mid a \mid}$, except for the way we index the components of their elements. For two sets $a \subset b$ and $y \in \mathbb{R}^b$ denote y’s restriction to a by $y|_a \in \mathbb{R}^a$:

$$y|_a(i) = y(i) \text{ for } i \in a.$$ (4)

The same notation continues to make sense for a of the form $b \times c$, and therefore can be used to write submatrices of a matrix. Thus, for $M \in \mathbb{R}^{\mid\Omega_0\mid \times \mid\Omega_0\mid}$ and nonempty $b, c \subset \Omega_0$

$$M|_{b \times c}$$ (5)

will mean the submatrix of M consisting of its components $M(i, j)$ with $(i, j) \in b \times c$. For $b = c$ we will write $M|_b$.

For $x \in \mathbb{R}^a$ denote by $x|_b \in \mathbb{R}^b$ the following extension of x to b:

$$x|_b(i) = \begin{cases} x(i) \text{ for } i \in a, \\ 0, \text{ otherwise.} \end{cases}$$ (6)
The random vector \(\tau = (\tau_k, k \in K) \) can also be thought of as a random function on \(K \), and we will often do so. Thus for \(A \subset K \), we may write \(\tau|_A \) to denote \((\tau_k, k \in A) \). The advantage of the notation \(\tau|_A \) is that we are able to index its components with elements of \(A \) rather than with the integers \(\{1, 2, 3, \ldots, |A|\} \); this proves useful when stating the recursive formulas and proofs below.

2.2 Subpartitions of \(K \)

The key aspect of the distribution of \(\tau \), already referred to in the introduction, is that it may put nonzero mass on lower dimensional subsets of \(\mathbb{R}^{[K]} \). This happens, for example, when \(X \) can hit \(\cap_{k \in A} \Gamma_k \) before \(\cup_{k \in A} \Gamma_k \), with positive probability for some \(A \subset K \) with \(|A| > 1 \). As this example suggests, one can divide \(\mathbb{R}^{[K]} \) into a number of regions and associate with each an intersection of events of the form “\(X \) hits a before b” for appropriate subsets of \(a, b \subset \Omega_0 \). To write down the various regions and the corresponding events we will use subpartitions of \(K \), which we introduce now.

Recall that \(K \) is the set of indices of the stopping times \(\{\tau_k\} \) or equivalently the sets \(\{\Gamma_k\} \). We call an ordered sequence of disjoint nonempty subsets of \(K \) a subpartition of \(K \). If the union of all elements of a subpartition is \(K \) then we call it a partition. For example, \((\{1, 2\}, \{3\}, \{4\}) \) is a subpartition of \(\{1, 2, 3, 4\} \). Let \(|s| \) the number of components in the subpartition and by \(s(n) \) its \(n \text{th} \) component, \(n \in \{1, 2, 3, \ldots, |s|\} \). In which order the sets appear in the partition matters. For example, \((\{3\}, \{4\}, \{1, 2\}) \) is different from the previous partition. In the combinatorics literature this is often called an “ordered partition,” see e.g., [11]. Only ordered partitions appear in the present work and therefore to be brief we always assume every subpartition to have a definite order and drop the adjective “ordered.” With a slight abuse of notation we will write \(s(n_1, n_2) \) to denote the \(n_2 \text{nd} \) element of the \(n_1 \text{st} \) set in the partition.

Two subpartitions \(s_1 \) and \(s_2 \) are said to be disjoint if \(\bigcup_{n} s_1(n) \) and \(\bigcup_{n} s_2(n) \) are disjoint subsets of \(K \). For a given disjoint pair of subpartitions \(s_1, s_2 \) let \(s_1 \cup s_2 \) be their concatenation, for example \((\{1, 2\}, \{3\}) \cup (\{4, 6\}) = (\{1, 2\}, \{3\}, \{4, 6\}) \).

For a subpartition \(s \) let \(Ls \) be its left shift, i.e., \(L(s(1), s(2), \ldots, s(|s|)) = (s(2), s(3), \ldots, s(|s|)) \). Let \(L^m \) denote left shift \(m \) times. Similarly for \(t \in \mathbb{R}^n \), \(n > 1 \) let \(Lt \in \mathbb{R}^{n-1} \) be its left shift. For \(t \in \mathbb{R}^n \) and \(r \in \mathbb{R} \) let \(t-r \) denote \((t_1-r, t_2-r, \ldots, t_n-r) \).

Given a subpartition \(s \) and an index \(0 < n \leq |s| \), let \(s - s(n) \) be the subpartition which is the same as \(s \) but without \(s(n) \), e.g., \((\{1, 2\}, \{3\}, \{4, 7\}) - \{3\} = (\{1, 2\}, \{4, 7\}) \). Given a subpartition \(s \) and a nonempty \(A \subset K - \cup_{n=1}^{|s|} s(n) \) let \(s + A \) denote the subpartition that has all the sets is \(s \) and \(A \), e.g., \((\{1, 2\}, \{3\}) + \{4, 7\} = (\{1, 2\}, \{3\}, \{4, 7\}) \).
Define
\[S(s) = \bigcup_{n=1}^{s} \bigcup_{k \in s(n)} \Gamma_k. \]

For a partition \(s \) define
\[R_K^+ \supset R_s = \left(\bigcap_{n=1}^{s \kappa} \bigcap_{k_1, k_2 \in s(n)} \{ t_{k_1} = t_{k_2} \} \right) \cap \{ t_{s(1,1)} < t_{s(2,1)} < \cdots < t_{s(s,1)} \}. \]

For example, for \(s = (\{1, 4\}, \{2\}, \{3, 5, 6\}) \)
\[R_s = \{ t : t_1 = t_4 < t_2 < t_3 = t_5 = t_6 \}. \]

Let \(\mathcal{S} \) be the set of all partitions of \(K \). The sets \(R_s, s \in \mathcal{S} \), are disjoint and their union is \(R_K^+ \). It turns out that for each \(s \in \mathcal{S} \), the distribution of \(\tau \) restricted to \(R_s \) is absolutely continuous with respect to the \(|s| \)-dimensional Lebesgue measure on \(R_s \). Our main result, given as Theorem 3.2 below, is a formula for this density.

3 The density of first hitting times

We start by deriving the density of a single hitting time over sets of sample paths that avoid a given subset of the state space until the hitting occurs.

3.1 Density of one hitting time

For any set \(d \subset \Omega_0 \) and \(u \in \mathbb{R}_+ \) define \(p_{\alpha,d}^u(i,j) = P_{\alpha}(X_u = j, X_v \notin d, v \leq u) \) and \(p_{\alpha}^u(i,j) = P_{\alpha}(X_u = j, X_v \notin d, v \leq u) \). In addition set \(p^u(i,j) \) of \(p_{\alpha}^u(i,j) = P_{\alpha}(X_u = j) \). The distribution \(p_{\alpha,d}^u \) is a row vector and \(p_{\alpha}^u \) are \(|\Omega_0| \times |\Omega_0| \) matrices. Conditioning on the initial state implies \(p_{\alpha,d}^u = \alpha p_{\alpha}^u \).

It follows from the definition of \(X, \lambda \) and \(p^h \) that
\[
\lim_{h \to 0} p^h(i,j)/h = \lambda(i,j),
\]
for \((i,j) \in d^c \times d^c\).

Lemma 3.1. Let \(\alpha \) be an initial distribution on \(\Omega_0 \) with \(\alpha|_d = 0 \). Then
\[
p_{\alpha,d}^u = \alpha e^{u\lambda|_{d^c}}.
\]

Proof. We only need to modify slightly the proof of [1, Theorem 3.4, page 48]. The steps are: 1) write down a linear ordinary differential equation (ODE) that the matrix valued function \(u \to p_{\alpha,d}^u|_{d^c}, u \in \mathbb{R}_+ \), satisfies, 2) the basic theory of ODEs will tell us that the unique solution is \(u \to e^{u\lambda|_{d^c}}|_{d^c} \).
Let \(\nu_1 \) be the first jump time of \(X \); for \(X_0 = i \in d^c \), \(\nu_1 \) is exponentially distributed with rate \(-\lambda(i, i) > 0\). Conditioning on \(\nu_1 \) gives

\[
p_d^u(i, j) = P_i(\nu_1 > u)I(i, j) + \int_0^u \lambda(i, i)e^{\lambda(i, i)v} \left(\sum_{l \in d \setminus \{i\}} \frac{\lambda(i, l)}{\lambda(i, i)} p_d^{u-v}(l, j) \right) dv
\]

for \((i, j) \in d^c \times d^c\). In comparison with the aforementioned proof we have only changed the index set of the last sum to ensure that only paths that keep away from \(d \) are included. The unique solution of (9) equals \(p_d^u \mid d^c = e^{u\lambda(d^c)}1 \). The equality (8) follows from this and \(\alpha_d = 0 \).

Remark 3.1. Probabilities that concern sample paths that stay away from a given set are called “taboo probabilities” in [12, Section 1.2]; [12, Equation (F), page 28] is equivalent to (9).

The next result (written in a slightly different form) is well known, see, e.g., [9, 3]. We record it as a corollary here and will use it in subsection 4.1 where we indicate the connections of our results to prior literature. Let 1 be the \(|\Omega_0| \) dimensional column vector with all components equal to 1.

Corollary 3.1. For \(\tau_d \doteq \inf\{u : X_u \in d\} \), and an initial distribution with \(\alpha_d = 0 \)

\[
P_\alpha(\tau_d > u) = \alpha e^{u\lambda(d^c)}1. \tag{10}
\]

Proof.

\[
P_\alpha(\tau_d > u) = \sum_{j \in d} P_\alpha(X_u = j, X_v \notin d, v \leq u) = \alpha e^{u\lambda(d^c)}1,
\]

where the last equality is implied by (8).

Remark 3.2. One must modify (10) to

\[
P_\alpha(\tau_d > u) = \alpha I_{d^c}e^{u\lambda(d^c)}1, \quad P_\alpha(\tau_d = 0) = \alpha I_d1
\]

if one does not assume \(\alpha_d = 0 \).

Theorem 3.1. Let \(a, b \subset \Omega_0 \), \(a \cap b = \emptyset \) be given. Define \(\tau_a \doteq \inf\{u : X_u \in a\} \) and set \(d = a \cup b \). Then

\[
\frac{d}{du}\left[P_\alpha(\tau_a \in (0, u], X_v \notin b, v \leq \tau_a)\right] = e^{u\lambda(d^c)}\lambda(d^c, a)1,
\]

where \(\alpha \) is the initial distribution of \(X \) with \(\alpha_d = 0 \).

The idea behind (11) and its proof is this: for \(\tau_a = u \) with \(X \) staying out of \(b \) until time \(u \), \(X \) has to stay in the set \(d^c \) until time \(u \) and jump exactly at that time into \(a \).
Proof of Theorem 3.1. The definition of the exponential distribution implies that that \(X \) jumps more than once in during the time interval \([u, u + h]\) has probability \(O(h^2) \). This, (7) and the Markov property of \(X \) (invoked at time \(u \)) give

\[
P_i(\tau_a \in (u, u + h), X_v \notin d, v \leq u) = \left(\sum_{j \in a} \sum_{l \in d^c} p_a^d(i, l) \lambda(l, j) \right) h + o(h). \tag{12}
\]

By the previous lemma \(p_a^d(i, j) \) equals exactly the \((i, j)^{th}\) component of \(e^{u\lambda(d^c)} \). These imply (11). \(\Box \)

The ideas in the previous proof also give

Proposition 3.1. Let \(a, b \subset \Omega_0 \), \(a \cap b = \emptyset \), a nonempty be given. Define \(\tau_a = \{ u : X_u \in a \} \) and \(d = a \cup b \). Let \(\alpha \) is an initial distribution on \(\Omega_0 \) with \(\alpha|_d = 0 \). Set \(\alpha_1 = \alpha e^{u\lambda(d^c)} \lambda(d^c, a) \) and \(\mathcal{V} = \{ X_v \notin b, v \leq \tau_a \} \). Then

\[
P_\alpha(X_{\tau_a} = j | (\tau_a, 1_\mathcal{V})) = \alpha_1(j)/\alpha_1 1_{\mathcal{V}},
\]

where \(1_\mathcal{V} \) is the indicator function of the event \(\mathcal{V} \).

\(\mathcal{V} \) is the event that \(X \) does not visit the set \(b \) before time \(\tau_a \).

Proof. The arguments that led to (12) in the proof of Theorem 3.1 also give

\[
P_i(X_{\tau_a} = j, \tau_a \in (u, u + h), X_v \notin b, v \leq u) = \left(\sum_{l \in d^c} p_a^d(i, l) \lambda(l, j) \right) h + o(h).
\]

The rest follows from the definition of the conditional expectation. \(\Box \)

Set \(b = \emptyset \) in Theorem 3.1 to get the density of \(\tau_a \). The formula (11) generalizes the exponential density: if \(\tau' \) is exponentially distributed with rate \(\lambda' \in (0, \infty) \) it has density \(e^{\lambda't} \).

3.2 The multidimensional density

One can extend (11) to a representation of the distribution of \(\tau \) using the subpartition notation of subsection 2.2. For a partition \(s \) of \(K \), \(n \in \{1, 2, ..., |s|\} \) and \(t \in R_s \subset R_+^K \) define

\[
\tilde{t}_n \doteq t_{s(n, 1)}, \quad \tilde{t}_0 \doteq 0, \quad W_n \doteq [S(L^{n-1}s)]^e, T_n \doteq \left[\bigcap_{k \in s(n)} \Gamma_k \right] \cap W_{n+1}, \tag{13}
\]

where \(W \) stands for “waiting” and \(T \) for “target.” The key idea of the density formula and its proof is the \(|s|\) step version of the one in Theorem
3.1. In order for \(\tau = t \in \mathbb{R}_+^K \), \(X \) has to stay in the set \(W_1 \) until time \(t_1 \) and jump exactly at that time into \(T_1 \subset W_2 \); then stay in the set \(W_2 \) until time \(t_2 \) and jump exactly then into \(T_2 \) and so on until all of the pairs \((W_n, T_n)\), \(n \leq |s| \), are exhausted.

Although not explicitly stated, all of the definitions so far depend on the collection \(\{\Gamma_k, k \in K\} \). We will express this dependence explicitly in the following theorem by including the index set \(K \) as a variable of the density function \(f \). This will be useful in its recursive proof, in the next subsection where we comment on the case when \(\alpha \) is an arbitrary initial distribution and in Proposition 3.2 where we give the conditional density of \(\tau \) given \(F_u, u > 0 \). For a sequence \(M_1, M_2, \ldots, M_n \) of square matrices of the same size \(\prod_{m=1}^n M_m \) will mean \(M_1 M_2 \cdots M_n \).

Theorem 3.2. For any partition \(s \in S \) of \(K \), the distribution of \(\tau \) on the set \(R_s \) has density

\[
f(\alpha, t, K) = \alpha \left(\prod_{n=1}^{|s|} e^{\lambda(W_n)(\bar{t}_n - \bar{t}_{n-1})} \lambda(W_n, T_n) \right) 1, \tag{14}
\]
t \(\in R_s \subset \mathbb{R}_+^K \), with respect to the \(|s| \) dimensional Lebesgue measure on \(R_s \).

In the proof we will use

Lemma 3.2. Let \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) be two measurable spaces and \(g : \mathcal{A}_1 \times \mathcal{A}_2 \to \mathbb{R} \) a bounded measurable function. Let \(Y_1 \) be an \(\mathcal{A}_1 \) valued random variable on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\). Let \(\mathcal{G} \) be a sub \(\sigma \)-algebra of \(\mathcal{F} \) and suppose 1) \(Y_1 \) is \(\mathcal{G} \) measurable and 2) under \(\mathbb{P} \), \(Y_2 \) has a regular conditional distribution given \(\mathcal{G} \). For \(y_1 \in \mathcal{A}_1 \) define \(h(y_1) = \mathbb{E}[g(y_1, Y_2)|\mathcal{G}] \). Then

\[
\mathbb{E}[g(Y_1, Y_2)|\mathcal{G}] = h(Y_1).
\]

The value \(h(y_1) \) in the previous lemma is defined via a conditional expectation and therefore it depends on \(\bar{\omega} \in \Omega \). The proof of Lemma 3.2 follows from the definition of regular conditional distributions, see, for example, [5, Section 5.1.3, page 197]. To invoke Lemma 3.2 we need the existence of the regular conditional distribution of \(Y_2 \); \(Y_2 \) in the proof below will take values in a finite dimensional Euclidean space (a complete separable metric space) and therefore will have a regular conditional distribution, for further details we refer the reader to, e.g., [5, Theorem 2.1.15] and [5, Theorem 5.1.9].

Proof. The proof will use induction on \(|K|\). For \(|K| = 1\) (11) (with \(b = \emptyset \)) and (14) are the same. Suppose that (14) holds for all \(K \) with \(|K| \leq \kappa - 1\); we will now argue that then it must also hold for \(|K| = \kappa \). Fix a partition \(s \) of \(K \). We would like to show that \(\tau \) restricted to \(R_s \) has the density (14).
For any continuous $g : \mathbb{R}^K \to \mathbb{R}$ with compact support, we would like to show
\[\mathbb{E}[1_{R_s}(\tau)g(\tau)] = \int_{R_s} g(t)f(\alpha, t, k)ds_t, \]
where ds_t denotes the $|s|$ dimensional Lebesgue measure on R_s. Define $\tau' = \bigwedge_{k \in K} \tau_k$; τ' is the first time X enters $\bigcup_{k \in K}\Gamma_k$. In the rest of the proof we will proceed as if $P_\alpha(\tau' < \infty) = 1$; the treatment of the possibility $P_\alpha(\tau' = \infty) > 0$ needs no new ideas and the following argument can be extended to handle it by adding several case by case comments.

If $\tau \in R_s$ holds then 1) $X_{\tau'} \in T_1$ and 2) $X_t \in W_1$ for $t \leq \tau'$; 1) and 2) also imply $\tau' = \tau|_{L_s}$. Therefore,
\[\{\tau \in R_s\} \subset W_1 \supseteq \{X_u \in W_1, u \leq \tau'\} \cap \{X_{\tau'} \in T_1\}. \]

Theorem 3.1 implies that $\lambda(W_1, T_1)$ is non zero if and only if W_1 has nonzero probability. Thus if $\lambda(W_1, T_1)$ is zero then $P_\alpha(\tau \in R_s) = 0$ and indeed $f(\alpha, t, K) = 0$ is the density of τ over R_s.

From here on we will treat the case when $\lambda(W_1, T_1)$ is nonzero.

Define $\hat{X}_u = X_u + \tau'$ and for $k \in S(L_s)$
\[\hat{\tau}_k = \inf \{u : \hat{X}_u \in \Gamma_k\}; \]
one obtains \hat{X} from X by shifting time for the latter left by τ', i.e., once time hits τ' reset it to 0 and call the future path of the process \hat{X}. The Markov property of X implies that \hat{X} is a Markov process with intensity matrix λ and initial point $\hat{X}_0 = X_{\tau'}$. The relation (16) implies
\[\hat{\tau} = \tau|_{L_s} - \tau' \]
on the set $\{\tau \in R_s\}$. Finally, the last display, the definition of τ and that of W_1 imply
\[\{\tau \in R_s\} = W_1 \cap \{\hat{\tau} \in R_{L_s}\}. \]

In words this display says: for τ to be partitioned according to s, among all $\{\Gamma_k\}, X$ must visit $\bigcap_{k \in S(1)} \Gamma_k$ first and after this visit the rest of the hitting times must be partitioned according to L_s.

Denote by $1'$ the function that maps all elements of K to 1. Define $\hat{g} : \mathbb{R} \times \mathbb{R}^{S(L_s)} \to \mathbb{R}$ as
\[\hat{g}(t', \hat{t}) = g(t'1' + \hat{t}|_{S(s)}), \]
where we use the function restriction/ extension notation of (11) and (6). Displays (17) and (18) imply
\[\mathbb{E}[1_{R_s}(\tau)g(\tau)] = \mathbb{E}[1_{W_1}1_{R_{L_s}}(\hat{\tau})\hat{g}(\tau', \hat{\tau})]. \]
Condition the last expectation on $\mathcal{F}_{\tau'}$:

$$= \mathbb{E}[\mathbb{E}[1_{\mathcal{W}_1} \mathcal{R}_{Ls} (\hat{\tau}) \hat{g}(\tau', \hat{\tau}) | \mathcal{F}_{\tau'}]].$$

\mathcal{W}_1 is $\mathcal{F}_{\tau'}$ measurable and gets out of the inner expectation

$$= \mathbb{E}[1_{\mathcal{W}_1} \mathbb{E}[1_{\mathcal{R}_{Ls}} (\hat{\tau}) \hat{g}(\tau', \hat{\tau}) | \mathcal{F}_{\tau'}]]. \quad (19)$$

For $t' \in \mathbb{R}_+$ define

$$h(t') \doteq \mathbb{E}[1_{\mathcal{R}_{Ls}} (\hat{\tau}) \hat{g}(t', \hat{\tau}) | \mathcal{F}_{\tau'}] = \mathbb{E}[1_{\mathcal{R}_{Ls}} (\hat{\tau}) \hat{g}(t', \hat{\tau}) | \hat{X}_0], \quad (20)$$

the last equality is by the strong Markov property of X. Once again, $h(t')$ is a conditional expectation and thus it depends on ω. Lemma 3.2 implies that the conditional expectation in (19) equals $h(t')$ ($\hat{\tau}$ is substituted for the Y_2 of the lemma). The random variable $\hat{X}(0)$ takes values in a finite set and therefore one can compute the last conditional expectation by conditioning on each of these values separately. This, that \hat{X} is a Markov process with intensity matrix λ and the induction assumption imply that on $\hat{X}_0 = j$

$$h(t') = \mathbb{E}[1_{\mathcal{R}_{Ls}} (\hat{\tau}) \hat{g}(t', \hat{\tau}) | \hat{X}_0 = j] = \int_{\mathcal{R}_{Ls}} f(\delta_j, t, K - s(1)) g(t', \hat{\tau}) d_{Ls} t. \quad (21)$$

Once we substitute (21) for the conditional expectation in (19) we get an expectation involving only three random variables: τ', $1_{\mathcal{W}_1}$ and $\hat{X}_0 = j$

$$\frac{\alpha e^{\lambda(W_1) \hat{t}_1}}{\alpha e^{\lambda(W_1) \hat{t}_1} \lambda(W_1, T_1)}.$$

These, the induction hypothesis, (20) and (21) imply that the outer expectation (19) equals (15). This last assertion finishes the proof of the induction step and hence the theorem.

Remark 3.3. If any of the matrices in the product (14) equals the zero matrix then f will be 0. Therefore, if $\lambda(W_n, T_n) = 0$ for some $n = 1, 2, \ldots, |s|$ then $P_\alpha(\tau \in R_n) = 0$. By definition $\lambda(W, T) = 0$ if $T = \emptyset$. Thus as a special case we have $P_\alpha(\tau \in R_n) = 0$ if $T_n = \emptyset$ for some $n = 1, 2, 3, \ldots, |s|$.
Remark 3.4. The first \(\kappa > 0 \) jump times of a standard Poisson process with rate \(\lambda' \in (0, \infty) \) have the joint density

\[
\prod_{n=1}^{\kappa} e^{\lambda'(t_n-t_{n-1})} \lambda',
\]

\(0 = t_0 < t_1 < t_2 < \cdots < t_\kappa \). The density \((14)\) is a generalization of this simple formula.

3.3 When \(\alpha \) puts positive mass on \(\cup_{k \in K} \Gamma_k \)

If \(\alpha \) puts positive mass on \(\gamma = \cup_{k \in K} \Gamma_k \) one best describes the distribution of \(\tau \) piecewise as follows. Define \(\bar{\alpha}' = 1 - \sum_{i \in \gamma} \alpha(i) \) and \(\alpha' = (\alpha - \sum_{i \in \gamma} \alpha(i) \delta_i)/\bar{\alpha}' \) if \(\bar{\alpha}' > 0 \); \(\alpha' \) is a real number and \(\alpha' \), when defined, is a distribution. First consider the case when \(\bar{\alpha}' > 0 \). The foregoing definitions imply

\[
P_\alpha(\tau \in U) = \bar{\alpha}' P_{\alpha'}(\tau \in U) + \sum_{i \in \gamma} \alpha(i) P_i(\tau \in U) \tag{22}
\]

for any measurable \(U \subset \mathbb{R}_+^K \). By its definition \(\alpha' \) puts no mass on \(\gamma = \cup_{k \in K} \Gamma_k \) and therefore Theorem 3.2 is applicable and \(f(\alpha', \cdot, K) \) is the density of the distribution \(P_{\alpha'}(\tau \in \cdot) \). For the second summand of \((22)\), it is enough to compute each \(P_i(\tau \in U) \) separately. Define \(K_i \doteq \{ k : i \in \Gamma_k \}, \ U_i \doteq \{ t : t \in U, t_k = 0, k \in K_i \}, \ U_i|_{\Gamma_i} \doteq \{ t|_{\Gamma_i}, t \in U_i \} \). Now remember that \(i \in \gamma \); thus if \(i \in \Gamma_k \) then \(\tau_k = 0 \) under \(P_i \), and therefore \(P_i(\tau \in U) = P_i(\tau \in U_i) \).

For \(\tau \in U_i \), the stopping times \(\tau|_{K_i} \) are all deterministically \(0 \). Thus to compute \(P_i(\tau \in U_i) \) it suffices to compute \(P_i(\tau|_{\Gamma_i} \in U_i) \). But by definition \(i \notin \cup_{k \in K^*_i} \Gamma_k \) and once again Theorem 3.2 is applicable and gives the density of \(\tau|_{\Gamma_i} \) under \(P_i \) as \(f(\delta_i, \cdot, \Gamma_i^\prime) \). If \(\bar{\alpha}' = 0 \) then

\[
P_\alpha(\tau \in U) = \sum_{i \in \gamma} \alpha(i) P_i(\tau \in U)
\]

and the computation of \(P_i(\tau \in U) \) goes as above.

3.4 Tail probabilities of \(\tau \)

By tail probabilities we mean probabilities of sets of the form

\[
\bigcap_{n=1}^{|s|} \bigcap_{k_1, k_2 \in \alpha(n)} \{ \tau_{k_1} = \tau_{k_2} \} \cap \{ \tau_{s(n, 1)} > t_n \} \cap \{ \tau_{s(n, 1)} \neq \tau_{s(n_2, 1)} \}, \tag{23}
\]

where \(s \) is a partition of \(K \) and \(t \in \mathbb{R}_+^{|s|} \) such that \(t_k < t_{n+1} \), \(n = 1, 2, 3, \ldots, |s| - 1 \). Thus this definition of tail events require that every equality and inequality condition be explicitly specified. One can write standard
tail events in terms of these, e.g., \(\{ \tau_1 > t_1 \} \cap \{ \tau_2 > t_2 \} \) is the same as the disjoint union

\[
\{ \{ \tau_1 > t_1, \tau_2 > t_2 \} \cap \{ \tau_1 \neq \tau_2 \} \} \cup \{ \tau_1 = \tau_2 > \max(t_1, t_2) \}.
\]

Both of these sets are of the form (23). Thus, it is enough to be able to compute probabilities of the form (23). From here on, to keep the notation short, we will assume that, over tail events, unless explicitly stated with an equality condition, all stopping times appearing in them are strictly unequal to each other (therefore, when writing formulas, we will omit the last intersection in (23)).

A tail event of the form (23) consists of a sequence of constraints of the form

\[
\{ \tau_{s(n,1)} = \tau_{s(n,2)} = \cdots = \tau_{s(n,s(n))} > t_n \}.
\]

There are two types of subconstraints involved here: that entrance to all \(\Gamma_k, k \in s(n) \), happen at the same time and that this event occurs after time \(t_n \). Keeping track of all of these constraints as they evolve in time requires more notation, which we now introduce.

Take two disjoint subpartitions \(s_1 \) and \(s_2 \) of \(K \) and an element \(t \in \mathbb{R}^{|s_1|} \) such that \(t_{|s_1|} > t_{|s_1|-1} > \cdots > t_2 > t_1 \); if \(|s_1| = 0 \) by convention set \(t = 0 \).

Generalize the class of tail events to

\[
T(s_1, s_2, t) \equiv \Omega \cap \left(\bigcap_{n=1}^{|s_1|} \bigcap_{k_1, k_2 \in s_1(n)} \{ \tau_{k_1} = \tau_{k_2} \} \cap \{ \tau_{s_1(n,1)} > t_n \} \right) \cap \bigcap_{n=1}^{|s_2|} \bigcap_{k_1, k_2 \in s_2(n)} \{ \tau_{k_1} = \tau_{k_2} \}. \tag{24}
\]

Setting \(s_1 = s \) and \(s_2 = \emptyset \) reduces (24) to (23). The indices in \(s_1 \) appear both in equality constraints and time constraints while indices in \(s_2 \) appear only in equality constraints.

Remark 3.5. The definition (24) implies that if a component of \(s_2 \) has only a single element, that component has no influence on \(T(s_1, s_2, t) \). For example, \(T(s_1, \{1\}, \{2,3\}, t) \) is the same as \(T(s_1, \{2,3\}, t) \).

To express \(P_\alpha(T(s_1, s_2, t)) \) we will define a collection of functions \(p_i, i \in \Omega_0 \), of \(s_1, s_2 \) and \(t \). Let \(p \) be the collection \(\{ p_i, i \in \Omega_0 \} \) written as a column matrix. For \(s_1 = \emptyset \), and \(i \in \Omega_0 \) define \(p_i \) as

\[
p_i(\emptyset, s_2, 0) \equiv P_i(T(\emptyset, s_2, 0)).
\]

The definitions of \(p \) and \(T \) and Remark 3.5 imply

\[
p(\emptyset, s_2, 0) = 1 \tag{25}
\]
if s_2 is empty or it consists of components with single elements. For a given disjoint pair of subpartitions s_1, s_2 define

$$T_n(s_1, s_2) = \bigcap_{k \in s_2(n)} \Gamma_k - S(s_1 \cup s_2 - s_2(n)), \quad T(s_1, s_2) = \bigcup_{n=1}^{\left| s_2 \right|} T_n(s_1, s_2).$$

If $s_1 \neq \emptyset$ define

$$p(s_1, s_2, t) =\int_0^{t_1} e^{u \lambda(W)} \lambda(W, T(s_1, s_2)) \left(\sum_{n=1}^{\left| s_2 \right|} I_{T_n(s_1, s_2)} p(s_1, s_2 - s_2(n), t - u) \right) du + e^{t_1 \lambda(W)} p(Ls_1, s_2 + s_1(1), Lt - t(1)),$$

where $W = [S(s_1 \cup s_2)]^c$. If $s_1 \neq \emptyset$ and $s_2 = \emptyset$ (26) reduces to

$$p(s_1, \emptyset, t) = e^{\lambda(S(s_1)^c) t_1} p(Ls_1, (s_1(1)), Lt - t_1).$$

We have the following representation of tail probabilities:

Theorem 3.3. Suppose $\Omega_0 - S(s_1 \cup s_2)$ is not empty and that α is an initial distribution on Ω_0 that puts all of its mass on this set. Then

$$P_\alpha(T(s_1, s_2, t)) = \alpha p(s_1, s_2, t).$$

The proof is parallel to the proof of Theorem 3.2 and involves the same ideas and is omitted.

One can write (14) recursively, similar to (26). The reverse is not true: equality constraints, when present, preclude a simple explicit formula for p similar to (14), but see subsection 3.5 for a slightly more explicit representation of p.

When s_1 has no equality constraints and $s_2 = \emptyset$, one can invoke (27) $|s_1|$ times along with Remark 3.5 and (25) and get

Corollary 3.2. Let α be as in Theorem 3.3. If $|s_1| > 0$ equals the dimension of t then

$$\alpha p(s_1, \emptyset, t) = \alpha \left(\prod_{n=1}^{\left| s_1 \right|} e^{\lambda(W_n)(t_n - t_{n-1})} \right) 1$$

where $W_n = [S(L^{-1}(s_1))]^c$.

The formula (28) is a generalization of equation (7) to general finite state Markov processes.

If $s_1 = \emptyset$ we have no time constraints and $P_\alpha(T(\emptyset, s_2, 0))$ reduces to the probability that certain equality and inequality constraints hold among the
stopping times. This can be written as the solution of a sequence of linear equations whose defining matrices are submatrices of the intensity matrix. The details require further notation and are left to future work (or to the reader) except for the special case of \(P_n(\tau_1 = \tau_2) \) which we would like use in what follows to relate our results to earlier works in the literature.

Define \(\tau_0 \doteq 0 \), and for \(n > 0 \) \(\nu_n \doteq \inf \{ u > \nu_{n-1}, X_u \neq X_{u-1} \} \). The sequence \(\{ \nu_n \} \) is the jump times of the process \(X \). Define \(\bar{X}_n \doteq X_{\nu_n} \). \(\bar{X} \) is a discrete time Markov chain with state space \(\Omega \); it is called the embedded Markov chain of the process \(X \). It follows from (7) that the one step transition matrix of \(\bar{X} \) is

\[
\lambda \doteq \begin{cases}
-\lambda(i,j)/\lambda(i,i), & \text{for } i \neq j, \\
0, & \text{otherwise}.
\end{cases}
\]

Define \(D \in \mathbb{R}^{\Omega \times \Omega} \) as the diagonal matrix

\[
D(i,j) = \begin{cases}
-1/\lambda(i,i), & \text{if } i = j, \\
0, & \text{otherwise}.
\end{cases}
\]

Left multiplying a matrix by \(D \) divides its \(i \)th row by \(-\lambda(i,i) \). Therefore, \(\lambda = I + D\lambda \).

Define \(\bar{\tau}_k \doteq \inf \{ n : \bar{X}_n \in \Gamma_k \} \). The event \(\{ \tau_1 = \tau_2 \} \) means that \(X \) hits the set \(\Gamma_1 \) and \(\Gamma_2 \) at the same time; because this event makes no reference to how time is measured, it can also be expressed in terms of \(\bar{X} \) as \(\{ \bar{\tau}_1 = \bar{\tau}_2 \} \).

Define the column vector \(q \in \mathbb{R}^{\Omega} \), \(q(i) \doteq P_i(\bar{\tau}_1 = \bar{\tau}_2) \). Conditioning on the initial position of \(X \) implies \(P_\alpha(\bar{\tau}_1 = \bar{\tau}_2) = \alpha q \). From here on we derive a formula for \(q \). Parallel to the arguments so far, we know that this event happens if and only if \(\bar{X} \) hits \(\Gamma_1 \cap \Gamma_2 \) before \(B = (\Gamma_1 - \Gamma_2) \cup (\Gamma_2 - \Gamma_1) \). Set \(w \doteq (\Gamma_1 \cup \Gamma_2)^c \). \(q \) satisfies the boundary conditions

\[
q|_{\Gamma_1 \cap \Gamma_2} = 1 \quad \text{and} \quad q|_B = 0 \tag{29}
\]

and is to be determined only for the states in \(w \). If a state \(i \in w \) cannot communicate with \(\Gamma_1 \cap \Gamma_2 \), \(q(i) \) is trivially 0; let \(w' \) denote the set of states in \(w \) that can communicate with \(\Gamma_1 \cap \Gamma_2 \). The Markov property of \(\bar{X} \) implies that for \(i \in w' \)

\[
q(i) = \sum_{j \in w'} \bar{\lambda}(i,j)q(j) + \sum_{j \in (\Gamma_1 \cap \Gamma_2)} \bar{\lambda}(i,j);
\]

or in matrix notation (see (13)):

\[
q|_{w'} = (\bar{\lambda}|_{w'}) q|_{w'} + (\bar{\lambda}|_{w' \times (\Gamma_1 \cap \Gamma_2)}) 1|_{\Gamma_1 \cap \Gamma_2}
\]

\[
(I - \bar{\lambda})|_{w'} q|_{w'} = (\bar{\lambda}|_{w' \times (\Gamma_1 \cap \Gamma_2)}) 1|_{\Gamma_1 \cap \Gamma_2}
\]

\[
(-D\lambda)|_{w'} q|_{w'} = (\bar{\lambda}|_{w' \times (\Gamma_1 \cap \Gamma_2)}) 1|_{\Gamma_1 \cap \Gamma_2}.
\]
For $i \neq j$, $\bar{\lambda}(i, j) = -\lambda(i, j)/\lambda(i, i) = (D\lambda)(i, j)$ and in particular the same holds for $(i, j) \in w' \times (\Gamma_1 \cap \Gamma_2)$ and therefore

$$(-D\lambda)|_{w'} \ q|_{w'} = (-D\lambda)|_{w' \times (\Gamma_1 \cap \Gamma_2)} \ 1|_{\Gamma_1 \cap \Gamma_2}.$$

There is no harm in taking the diagonal D out of the projection operation on both sides of the last display:

$$\lambda|_{w'} \ q|_{w'} = \lambda|_{w' \times (\Gamma_1 \cap \Gamma_2)} \ 1|_{\Gamma_1 \cap \Gamma_2}.$$

That all states in w' can communicate with $\Gamma_1 \cap \Gamma_2$ implies that the matrix on the left is invertible and therefore

$$q|_{w'} = (\lambda|_{w'})^{-1} \lambda|_{w' \times (\Gamma_1 \cap \Gamma_2)} \ 1|_{\Gamma_1 \cap \Gamma_2}. \quad (30)$$

3.5 A second representation of tail probabilities

For a nonnegative integer n, denote by $P(n)$ the set of all subpermutations of $\{1, 2, 3, \ldots, n\}$, e.g., $P(2) = \{\emptyset, (1), (2), (1, 2), (2, 1)\}$. The tail probability formula \((34)\) conditions on the first time τ' that one of the equality constraints is attained in the time interval $[0, t_1]$ and writes what happens after that as a recursion. What can happen between τ' and t_1? A number of other equalities can be attained and rather than pushing these into the recursion, one can treat them inside the integral using a density similar to \((14)\):

$$p(s_1, s_2, t) = \sum_{\pi \in P(|\pi|)} \left(\int A_{\pi} \left(\prod_{n=1}^{\left|\pi\right|} e^{(v_n-v_{n-1})\lambda(W_n)J_n} \right) e^{(t_1-v_{\left|\pi\right|})\lambda(W)} dv \right)$$

$$\quad \cdot p(Ls_1, s_2 - s_2(\pi) + s_1(1), Lt - t_1), \quad \text{where } v_0 = 0 \text{ and}$$

$$W_n \doteq [S(s_1 \cup s_2 - \cup_{m=1}^{n}s_2(\pi(n_1)))]^c, \quad T_n \doteq \left[\bigcap_{k \in s_2(\pi(n))} \Gamma_k \right] \cap W_{n+1},$$

$$s_2(\pi) \doteq \cup_{m=1}^{\left|\pi\right|} s_2(\pi(m)), \quad W \doteq [S(s_1 \cup s_2 - s_2(\pi))]^c,$$

$$A_{\pi} \doteq \left\{ v \in \mathbb{R}^{\left|\pi\right|} : 0 < v_1 < v_2 < \cdots < v_{\left|\pi\right|} \leq t_1 \right\},$$

$$J_n \doteq \lambda(W_n, T_n),$$

dv is the $|\pi|$ dimensional Lebesgue measure on $\mathbb{R}^{\left|\pi\right|}$ for $|\pi| > 0$; $A_{\pi} \doteq \{0\}$ and dv is the trivial measure on $\{0\}$ for $|\pi| = 0$. The proof involves no additional ideas and is omitted.
3.6 Conditional formulas

The proof of Theorem 3.2 shows how one can use the density formula (14) to write down the regular conditional distribution of τ given $F_{\tau'}$. One can do the same for F_{u_0}, where $u_0 \in \mathbb{R}_+$ is a given deterministic time. To that end, introduce the set valued process

$$V_u = \{ k \in K, \tau_k < u \}.$$

If K is finite, then so is its power set 2^K, thus V_u takes values in a finite set. V_u is the collection of Γ_k that X has visited up to time u. For ease of notation we will denote the complement of V_u by \overline{V}_u. The times $\tau|_{\overline{V}_u}$ are known by time u_0 and hence they are constant given F_{u_0}. Thus, we only need to write down the regular conditional density of $\tau|_{\overline{V}_u}$, i.e., the hitting times to the Γ_k that have not been visited by time u_0. From here on the idea is the same as in the proof of Theorem 3.2. Define $\hat{X}_u = X_{u_0} + u$ and for $k \in \overline{V}_{u_0}$

$$\hat{\tau}_k = \inf \{ u : \hat{X}_u \in \Gamma_k \}.$$

The definitions of \hat{X} and $\hat{\tau}$ imply

$$\hat{\tau} = \tau|_{\overline{V}_{u_0}} - u_0. \tag{32}$$

$\hat{X}_0 = X_{u_0}$ is a constant given F_{u_0}. Thus the process \hat{X} has exactly the same distribution as X with initial point X_{u_0} and Theorem 3.2 applies and gives the density of $\hat{\tau}$, which is, by (32), the regular conditional distribution of $\tau|_{\overline{V}_{u_0}} - u_0$. Therefore, for any bounded measurable $g : \mathbb{R}^{\overline{V}_{u_0}} \to \mathbb{R}$ and a partition s' of \overline{V}_{u_0}

$$\mathbb{E} \left[g(\tau|_{\overline{V}_{u_0}}) 1_{R'}(\tau|_{\overline{V}_{u_0}}) \big| F_{u_0} \right] = \int_{R'} g(u_0 + u)f(\delta_{X_{u_0}}, u, \overline{V}_{u_0})d_{s'}u.$$

We record this as

Proposition 3.2. The regular conditional density of $\tau|_{\overline{V}_{u_0}} - u_0$ given F_{u_0} is $f(\delta_{X_{u_0}}, t, \overline{V}_{u_0})$.

4 Absorbing $\{\Gamma_k\}$ and connections to earlier results

A nonempty subset $a \subset \Omega_0$ is said to be absorbing if $\lambda(i, j) = 0$ for all $i \in a$ and $j \in a^c$, i.e., if $\lambda(a, a^c) = 0$. We next derive an alternative expression for the density formula (14) under the assumption that all $\{\Gamma_k, k \in K\}$ are absorbing. The first step is
Proposition 4.1.

\[p^u_{\alpha,a} = \alpha e^{\lambda(a^c)u} = \alpha e^{\lambda u} I_a^c \]

(33)

if \(a \) is absorbing and \(\alpha|_a = 0 \).

Proof. We already know from Lemma 3.1 that the first equality holds. Therefore, it only remains to show \(p^u_{\alpha,a} = \alpha e^{\lambda u} I_a^c \). [1, Theorem 3.4, page 48] implies that the distribution of \(X \) at time \(u \) is \(\alpha e^{\lambda u} \), i.e., \(P_\alpha(X_u = j) = \left[\alpha e^{\lambda u} \right](j) \) for all \(j \in \Omega_0 \). That \(a \) is absorbing implies that if \(X_{u_0} \in a \) then \(X_u \in a \) for all \(u \geq u_0 \). Therefore for \(j \in a^c \)

\[P_\alpha(X_u = j) = P_\alpha(X_u = j, X_v(\omega) \notin a, v \leq u), \]

i.e.,

\[(\alpha p^u_{\alpha,a})|_{a^c} = (\alpha e^{\lambda u} I_a^c)|_{a^c}. \]

(34)

The definition of \(p^u_{\alpha,a} \) and \(\alpha|_a = 0 \) imply \((\alpha p^u_{\alpha,a})|_{a^c} = 0 \); The definition of \(I_a^c \) implies \((\alpha e^{\lambda u} I_a^c)|_{a^c} = 0 \). This and (34) imply (33).

Proposition 4.1 says the following: if \(a \) is absorbing then \(\alpha e^{\lambda(a^c)u} \) is the same as \(\alpha e^{\lambda u} I_a^c \) and both describe the probability of each state in \(a^c \) at time \(t \) over all paths that avoid \(a \) in the time interval \([0, t]\). The first expression ensures that all paths under consideration avoid the set \(a \) by setting the jump rates into \(a \) to 0. The second expression does this by striking out those paths that end up in one of the states in \(a \) (the \(I_a^c \) term does this); this is enough because \(a \) is absorbing: once a path gets into \(a \) it will stay there and one can look at the path’s position at time \(t \) to figure out whether its weight should contribute to \(p^u_{\alpha,a} \). In the general case this is not possible, hence the \(\lambda(a^c) \) in the exponent.

The previous proposition implies that one can replace the \(\lambda(W_n) \) in the density formula (14) with \(\lambda \):

Proposition 4.2. For \(s \in S \) and \(t \in R_s \) let \(\bar{t} \) be defined as in (13) and let \(f \) be the density given in Theorem 3.2. Then

\[f(\alpha, t, K) = \alpha \left(\prod_{n=1}^{[s]} e^{\lambda(T_{\bar{t}+n-1}-T_{\bar{t}+n-1})} \lambda(W_{\bar{t}+n-1}, T_{\bar{t}+n}) \right) 1 \]

(35)

if all \(\Gamma_k \) are absorbing.

Proof. Set \(\hat{\alpha}_0 = \alpha_0 \equiv \alpha \),

\[\hat{\beta}_n = \hat{\alpha}_n e^{\lambda(T_{\bar{t}+n-1})}, \quad \beta_n = \hat{\alpha}_n e^{\lambda(W_{\bar{t}+n-1})}, \]

\(n \in \{0, 1, 2, 3, ..., [s]\} \) and for \(n > 0 \)

\[\hat{\alpha}_n = \hat{\beta}_{n-1} \lambda(W_{\bar{t}+n-1}, T_{\bar{t}+n}), \quad \alpha_n = \beta_{n-1} \lambda(W_{\bar{t}+n}, T_{\bar{t}+n}). \]
The right side of (35) is $\hat{\alpha}|s|$ and its left side is $\alpha|s|$. We will prove $\alpha_n = \hat{\alpha}_n$ (36) by induction; setting $n = |s|$ in the last display will give (35). For $n = 0$ (36) is true by definition; assume that it holds for $0 < n - 1 < |s|$: we will argue that this implies that it must also for n. Union of absorbing sets is also absorbing, therefore $S(L^{n-1}s)$ is absorbing. This, $W_n = \Omega_0 - S(L^{n-1}s)$, the induction hypothesis and (33) (set $a = S(L^{n-1}s)$) imply

$$\alpha_n = \beta_n \lambda(W_n, T_n) = \alpha_{n-1} e^{\lambda(L_n - L_{n-1})} \lambda(W_n, T_n) = \hat{\beta}_{n-1} I_{W_n} \lambda(W_n, T_n).$$

The identities (2) and (3) imply $I_{W_n} \lambda(W_n, T_n) = \lambda(W_n, T_n)$ and therefore

$$\hat{\beta}_{n-1} \lambda(W_n, T_n) = \hat{\alpha}_n.$$

This completes the induction step and therefore the whole proof. \square

Using the same ideas and calculations as in the previous proof one can write the tail probability formula (26) as

$$p(s_1, s_2, t) = \int_0^{t_1} e^{\lambda u} \lambda(W_n, T(s_1, s_2)) \left(\sum_{n=1}^{s_2} I_{T_n(s_1, s_2)} p(s_1, s_2 - s_2(n), t - u) \right) du$$

$$+ e^{\lambda_1} I_{W_n} p(Ls_1, s_2 + s_1(1), Lt - t_1)$$

and (27) as

$$p(s_1, \emptyset, t) = e^{\lambda_1} I_{S(s_1)} p(s_1 - s_1(1), (s_1(1)), Lt - t_1)$$

(37)

when $\{\Gamma_k, k \in K\}$ are absorbing.

Let us briefly point out another possible modification of the density formula for absorbing $\{\Gamma_k\}$. Define

$$\hat{T}_0 = \Omega_0 - S(s), \quad \hat{T}_n = \bigcap_{m \leq n, s(m)} \Gamma_k, \quad \hat{T}_n = \hat{T}_n - S(L^n(s)), \quad \hat{W}_n = \hat{T}_{n-1},$$

where $s \in S$ and $n \in \{1, 2, 3, ..., |s|\}$. If $\{\Gamma_k\}$ are absorbing one can replace the target and waiting sets T_n and W_n of (13) with \hat{T}_n and \hat{W}_n defined above. One can prove that the density formula continues to hold after this modification with an argument parallel to the proof of Proposition 4.2 using in addition that the intersection of absorbing sets is again absorbing.
4.1 Connections to earlier results

This subsection gives several examples of how to express density/distribution formulas from the prior phase-type distributions literature as special cases of the ones derived in the present work.

We begin by three formulas from [3]. The first two concern a single hitting time and the last a pair. [3] denotes the state space of X by E assumes that it has an absorbing element Δ, denotes $\lambda(\Delta)^\epsilon$ by A and inf $\{u : X_u = \Delta\} \neq T$. [3] also uses the letter α to denote the initial distribution of X, but over the set $\hat{E} = E - \{\Delta\}$ (and implicitly assuming $P(X_0 = \Delta) = 0$). We will use the symbol $\hat{\alpha}$ to denote the ‘α of [3]’. The relation between α and $\hat{\alpha}$ is $\alpha(\Delta)^\epsilon = \hat{\alpha}$.

The first line of [3, equation (2), page 690] says $P_\alpha(T > u) = \alpha e^{Au} e$ where e is the $|E| - 1$ dimensional vector with all component equal to 1. The corresponding formula in the present work is [10] where one takes $d = \{\Delta\}$. The following facts imply the equality of these formulas 1) $\lambda(d^c)|_{d^c} = A$ and 2) the row of $\lambda(d^c)$ corresponding to Δ is 0. The second line of the same equation gives $-\hat{\alpha} e^{\alpha A} A e$ as the density of T. The corresponding formula here is [11] with $b = \emptyset$, and $\alpha = \{\Delta\}$ for which it reduces to $e^{\alpha A} \lambda(\alpha, A) e$. This time, 1), 2) and the following fact imply the equality of the formulas: the row sums of λ are zero, therefore $\lambda(\alpha, \Delta)|_{\alpha} = \lambda|_{\alpha} e = A e$. The matrix $\lambda(\alpha, A)$ is the column of λ corresponding to Δ; one way to write it is as the density of T. The corresponding formula in [3] is another way to take the Δ column of λ and replace its components whose indices appear in $\Gamma_1 \cup \Gamma_2$ with 0. Denote this vector by ν_Δ. Then the right side of [13] is

$$P_\alpha(T_1 = T_2 > u) = \alpha e^{Au} A^{-1} (Ag_1 g_2 - [A, g_1] - [A, g_2]) e,$$

where $g_i = I_{\Gamma_i}(\Delta)^\epsilon$ and for two matrices B and C, $[B, C] = BC - CB$. The absorbing property of Γ_1 and Γ_2 implies that the matrix inside the parenthesis in the last display equals $g'A$, where $g' = I_{(\Gamma_1 \cup \Gamma_2)^\epsilon}|_{\hat{E}}$, i.e., the same matrix as A except that the rows whose indices appear in $\Gamma_1 \cup \Gamma_2$ are replaced with 0. Thus $(Ag_1 g_2 - [A, g_1] - [A, g_2]) e$ is another way to take the Δ column of λ and replace its components whose indices appear in $\Gamma_1 \cup \Gamma_2$ with 0. Denote this vector by C_{Δ}. Then the right side of [13] is

$$\alpha|_{\hat{E}} \left(e^{\lambda u}|_{\hat{E}}\right) A^{-1} C_{\Delta}.$$

The same probability is expressed by a special case of [27]: for the present case one sets $K = \{1, 2\}$, $s_1 = (\{1, 2\})$; for these values, [27] and conditioning on the initial state gives

$$P_\alpha(\tau_1 = \tau_2 > u) = \alpha e^{\lambda u} I_w(\emptyset, (\{1, 2\}), 0),$$

(40)
where $w = (\Gamma_1 \cup \Gamma_2)^c$. Remember that we have denoted the last probability as q and derived for it the formulas (29) and (30). The article [3] assumes that all states can communicate with Δ, which implies that w' of (30) equals w. This and $\Gamma_1 \cap \Gamma_2 = \{\Delta\}$ imply $\lambda_{w' \times \Gamma_1 \cap \Gamma_2}1$ in (30) equals $\lambda_{(\Gamma_1 \cup \Gamma_2)^c \times \Delta}$ i.e., the Δ column of λ projected to its indices in $(\Gamma_1 \cup \Gamma_2)^c$, i.e., $C_{\Delta|w}$. The only difference between C_{Δ} and $C_{\Delta|w}$ is that the former has zeros in its extra dimensions. This and the absorbing property of Γ_k imply

$$(\lambda|_w)^{-1}C_{\Delta|w} = (A^{-1}C_{\Delta})|_w.$$

Note that we are commuting the projection operation and the inverse operation; this is where the absorbing property is needed. The last display, (29) and (30) give

$$\alpha(\{\Delta\}) = 0$$

imply that one can rewrite the right side of (40) as

$$\alpha e^{\lambda u}(A^{-1}C_{\Delta})|^E.$$

Once again $\alpha(\Delta) = 0$ implies that the last expression equals (35).

The density formula [7, (3.1.11)] will provide our last example. The process X of [7] is a random walk (with absorbing boundary) on \mathbb{Z}_2^m with increments $\{-e_k, k = 1, 2, 3, ..., m\}$ where e_k is the unit vector with k^{th} coordinate equal to 1 (7) uses different but equivalent notation, in particular the name of the process is Y and its state space is represented by subsets of $\{1, 2, 3, ..., m\}$; the notation of this paragraph is chosen to ease discussion here and in the ensuing sections). [7] takes $\Gamma_k = \{z \in \mathbb{Z}_2^m : z_k = 0\} (\Delta_n, \text{see the display after (7) on page 694})$, and assumes them to be absorbing. The jump rate for the increment $-e_k$ is assumed to be $\langle X, b_k \rangle + a_k$ for fixed $b_k \in \mathbb{R}^m$ and $a_k \in \mathbb{R}$ (given in (7) (2.1)). A key property of this setup is this: take any collection $\{\Gamma_k_1, \Gamma_k_2, ..., \Gamma_k_n\}$ with $n > 1$; because the only increments of X are the $\{-e_k\}$, the process cannot enter the sets in the collection at the same time. Thus, in this formulation, X must hit the $\{\Gamma_k\}$ at separate times and the distribution of τ has no singular part, i.e., $P(\tau \in R_n) = 0$ for $|s| < m$, and one needs only the density of τ with respect to the full Lebesgue measure in \mathbb{R}^m (the “absolutely continuous part”). As noted in [7], this is already available in [5] (see the display following (7) on page 694) and is given in (7) display (3.1.1) as follows:

$$f(t) = (-1)^m \alpha \prod_{n=1}^{m-1} e^{\lambda(t_n - t_{n-1})}(\lambda G_{kn} - G_{kn}) \left| e^{\lambda(t_{m-1} - t_{m-2})} \lambda G_{km} \right|_1, \quad (41)$$

for $t \in R_n$ with $|s| = m$; here $G_k = I\Gamma_k$ and k_n is the index for which $t_{kn} = \hat{t}_n$ (7 uses the letter Q for the rate matrix λ). We briefly indicate why (35) is equivalent to the last formula with the assumptions of this paragraph, i.e., when the dynamics of X precludes it to enter more than one of the $\{\Gamma_k\}$ at the same time and in particular when $|s|$ equals the dimension of τ (denoted
constrained random walk with the following increments:

\[\tau_k \text{ be absorbing, i.e., if } X_k \in \Gamma_k \text{ implies } \exists \tau_k \text{ (as above)}, \]\n
As we noted above, for \(\alpha \) defined by the partitions \(s_1 = \{2, 3\}, \{1\}\) and \(s_2 = \{1, 2, 3\}\); the first corresponds to the event \(\{\tau \in R_{s_1} \} = \{\tau_2 < \tau_1 = \tau_3\}\) and the second to \(\{\tau \in R_{s_2} \} = \{\tau_1 = \tau_2 = \tau_3\}\).

On the other hand again Lemma 2.1 and the absorbing property of \(\Gamma_k\) imply

\[\lambda G_k - G_k \lambda = \lambda(\Gamma_k, \Gamma_k^c) - \lambda(\Gamma_k^c, \Gamma_k)\]

\[= -\lambda(\Gamma_k^c, \Gamma_k).\]

These imply that one can write \(\lambda(W_{n, \Gamma_k})\) of Proposition 4.2, and therefore under the current assumptions the last display and (35) are equal.

5 Numerical Example

The state space of our numerical example is \(\Omega_0 = \mathbb{Z}_3^2\). For \(z \in \mathbb{Z}_3^2\) and \(k \in K = \{1, 2, 3\}\) let \(z_k\) denote the \(k\)th component of \(z\). For the collection \(\{\Gamma_k\}\) take

\[\Gamma_k = \{z : z_k = 0\}.\]

\(\tau_k\), as before, is the first time the process \(X\) hits the set \(\Gamma_k\). The initial distribution \(\alpha\) will be the uniform distribution over the set

\[\Omega_0 - \bigcup_{k \in K} \Gamma_k = \left\{z : \min_{k \in K} z_k > 0\right\}.\]

We will compute the density of \(\tau = (\tau_1, \tau_2, \tau_3)\) over the sets \(R_{s_1}, R_{s_2} \subset \mathbb{R}_+^3\) defined by the partitions \(s_1 = (\{2, 3\}, \{1\})\) and \(s_2 = (\{1, 2, 3\})\); the first corresponds to the event \(\{\tau \in R_{s_1}\} = \{\tau_2 < \tau_1 = \tau_3\}\) and the second to \(\{\tau \in R_{s_2}\} = \{\tau_1 = \tau_2 = \tau_3\}\).

The dynamics of \(X\) on \(\mathbb{Z}_3^2\) for our numerical example will be that of a constrained random walk with the following increments:

\[\pm e_k, \pm(e_1 + e_2), \pm(e_1 + e_2 + e_3), k \in K,\]

where \(e_1 \equiv (1, 0, 0), e_2 \equiv (0, 1, 0)\) and \(e_3 \equiv (0, 0, 1)\); the \(\{\Gamma_k\}\) are assumed to be absorbing, i.e., if \(X_{u_0} \in \Gamma_k\) any increment involving \(\pm e_k\) can no longer be
Figure 1: The level curves of the density f for $\tau_2 = \tau_3 < \tau_1$. On the right: the values of f over the line segment connecting $(0, 0)$ to $(0.5, 1)$.

an increment of X for $u > u_0$. The sets $B_k = \{z : z_k = 2\}$ are “reflecting” in the sense that if $X_t \in B_k$ for some t, increments involving $+e_k$ cannot be the first increment of X in the time interval $[t, \infty)$. We assume the following jump rates for the increments listed in (42):

$$2, 1, 2, 1, 3, 1, 0.5, 0.5, 0.2, 0.2.$$

These rates and the aforementioned dynamics give a $27 \times 27 \lambda$ matrix. The level sets $f(\alpha, \cdot, K)|_{R_{s_1}}$ are depicted in Figure 1 and the graph of $f(\alpha, \cdot, K)|_{R_{s_2}}$ is depicted in Figure 2.

For the parameter values of this numerical example, $P_\alpha(\cap_{k \neq k'} \tau_k \neq \tau_{k'}) = 0.899$ and thus the singular parts account for around 10% of the distribution of τ.

6 Conclusion

Our primary motivation in deriving the formulas in the present paper has been their potential applications to credit risk modeling. Let us comment on this potentiality starting from the credit risk model of [7]. With the results in the present work one can extend the modeling approach of [7] in two directions. Remember that the underlying process in [7] can only move by increments of $\{-e_k\}$ i.e., the model assumes that the obligors can default only one at a time. However, for highly correlated obligors it may make sense to allow simultaneous defaults, i.e., allow increments of the form $-\sum_n e_{k_n}$. Once multiple defaults are allowed the default times will have nonzero singular parts and the formulas in the present work can be used to compute them, as is done in the numerical example of Section 5. Secondly,
the default sets \(\{ \Gamma_k \} \) no longer have to be assumed to be absorbing. Thus, with our formulas, one can treat models that allow recovery from default.

As \(|\Omega_0|\) increases and other formulas derived in the present paper can take too long a time to compute (the same holds for earlier density formulas in the prior literature). Thus it is of interest to derive asymptotic approximations for these densities.

References

